Menu Close

calculate-1-2-logx-1-x-dx-




Question Number 148564 by mathmax by abdo last updated on 29/Jul/21
calculate ∫_1 ^2  ((logx)/(1+x))dx
calculate12logx1+xdx
Answered by Kamel last updated on 29/Jul/21
  Ω=∫_1 ^2 ((Ln(x))/(1+x))dx=−∫_(1/2) ^1 ((Ln(x))/(x(1+x)))dx     =(1/2)Ln^2 (2)+Ln(2)Ln((3/2))−∫_(1/2) ^1 ((Ln(1+x))/x)dx    =Ln(2)Ln(3)−(1/2)Ln^2 (2)+Li_2 (−1)−Li_2 (−(1/2))   ∴∫_1 ^2 ((Ln(x))/(1+x))dx =Ln(2)Ln(3)−(1/2)Ln^2 (2)−(π^2 /(12))−Li_2 (−(1/2))
Ω=12Ln(x)1+xdx=121Ln(x)x(1+x)dx=12Ln2(2)+Ln(2)Ln(32)121Ln(1+x)xdx=Ln(2)Ln(3)12Ln2(2)+Li2(1)Li2(12)12Ln(x)1+xdx=Ln(2)Ln(3)12Ln2(2)π212Li2(12)

Leave a Reply

Your email address will not be published. Required fields are marked *