Menu Close

calculate-1-2-t-2-t-2-1-dt-




Question Number 40153 by maxmathsup by imad last updated on 16/Jul/18
calculate  ∫_1 ^2    ((t−2)/( (√(t^2  −1))))dt
calculate12t2t21dt
Commented by maxmathsup by imad last updated on 17/Jul/18
I  =  ∫_1 ^2     ((tdt)/( (√(t^2  −1))))dt −2 ∫_1 ^2   (dt/( (√(t^2  −1)))) but  ∫_1 ^2   (t/( (√(t^2  −1))))dt =[(√(t^2 −1))]_1 ^2  =(√3)    also changement t=chu  give  ∫   (dt/( (√(t^2 −1)))) =∫   ((shu du)/(shu)) = u +c = argch(t)=ln(t+(√(t^2  −1)))+c ⇒  ∫_1 ^2    (dt/( (√(t^2  −1)))) =[ln(t+(√(t^2 −1)))]_1 ^2   =ln(2+(√3)) ⇒  I =(√3)  −2ln(2+(√3)) .
I=12tdtt21dt212dtt21but12tt21dt=[t21]12=3alsochangementt=chugivedtt21=shudushu=u+c=argch(t)=ln(t+t21)+c12dtt21=[ln(t+t21)]12=ln(2+3)I=32ln(2+3).
Answered by sma3l2996 last updated on 16/Jul/18
∫_1 ^2 ((t−2)/( (√(t^2 −1))))dt=∫_1 ^2 (t/( (√(t^2 −1))))dt−2∫_1 ^2 (dt/( (√(t^2 −1))))  =[(√(t^2 −1))]_1 ^2 −2∫_1 ^2 ((t+(√(t^2 −1)))/((t+(√(t^2 −1)))(√(t^2 −1))))dt  =(√5)−2∫_1 ^2 ((t+(√(t^2 −1)))/( (√(t^2 −1))))×(dt/(t+(√(t^2 −1))))  =(√5)−2∫_1 ^2 ((t/( (√(t^2 −1))))+1)×(1/(t+(√(t^2 −1))))dt  =(√5)−2∫_1 ^2 ((d(t+(√(t^2 −1))))/(t+(√(t^2 −1))))  =(√5)−2[ln∣t+(√(t^2 −1))∣]_1 ^2 =(√5)−2ln(2+(√5))
12t2t21dt=12tt21dt212dtt21=[t21]12212t+t21(t+t21)t21dt=5212t+t21t21×dtt+t21=5212(tt21+1)×1t+t21dt=5212d(t+t21)t+t21=52[lnt+t21]12=52ln(2+5)

Leave a Reply

Your email address will not be published. Required fields are marked *