Question Number 40153 by maxmathsup by imad last updated on 16/Jul/18
$${calculate}\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\frac{{t}−\mathrm{2}}{\:\sqrt{{t}^{\mathrm{2}} \:−\mathrm{1}}}{dt} \\ $$
Commented by maxmathsup by imad last updated on 17/Jul/18
$${I}\:\:=\:\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\:\frac{{tdt}}{\:\sqrt{{t}^{\mathrm{2}} \:−\mathrm{1}}}{dt}\:−\mathrm{2}\:\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\frac{{dt}}{\:\sqrt{{t}^{\mathrm{2}} \:−\mathrm{1}}}\:{but} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\frac{{t}}{\:\sqrt{{t}^{\mathrm{2}} \:−\mathrm{1}}}{dt}\:=\left[\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\right]_{\mathrm{1}} ^{\mathrm{2}} \:=\sqrt{\mathrm{3}}\:\:\:\:{also}\:{changement}\:{t}={chu}\:\:{give} \\ $$$$\int\:\:\:\frac{{dt}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}\:=\int\:\:\:\frac{{shu}\:{du}}{{shu}}\:=\:{u}\:+{c}\:=\:{argch}\left({t}\right)={ln}\left({t}+\sqrt{{t}^{\mathrm{2}} \:−\mathrm{1}}\right)+{c}\:\Rightarrow \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\frac{{dt}}{\:\sqrt{{t}^{\mathrm{2}} \:−\mathrm{1}}}\:=\left[{ln}\left({t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\right)\right]_{\mathrm{1}} ^{\mathrm{2}} \:\:={ln}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)\:\Rightarrow \\ $$$${I}\:=\sqrt{\mathrm{3}}\:\:−\mathrm{2}{ln}\left(\mathrm{2}+\sqrt{\mathrm{3}}\right)\:. \\ $$$$ \\ $$$$ \\ $$
Answered by sma3l2996 last updated on 16/Jul/18
$$\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{t}−\mathrm{2}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}{dt}=\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{t}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}{dt}−\mathrm{2}\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{dt}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$=\left[\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\right]_{\mathrm{1}} ^{\mathrm{2}} −\mathrm{2}\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}{\left({t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\right)\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}{dt} \\ $$$$=\sqrt{\mathrm{5}}−\mathrm{2}\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}×\frac{{dt}}{{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$=\sqrt{\mathrm{5}}−\mathrm{2}\int_{\mathrm{1}} ^{\mathrm{2}} \left(\frac{{t}}{\:\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}+\mathrm{1}\right)×\frac{\mathrm{1}}{{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}}{dt} \\ $$$$=\sqrt{\mathrm{5}}−\mathrm{2}\int_{\mathrm{1}} ^{\mathrm{2}} \frac{{d}\left({t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\right)}{{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}} \\ $$$$=\sqrt{\mathrm{5}}−\mathrm{2}\left[{ln}\mid{t}+\sqrt{{t}^{\mathrm{2}} −\mathrm{1}}\mid\right]_{\mathrm{1}} ^{\mathrm{2}} =\sqrt{\mathrm{5}}−\mathrm{2}{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right) \\ $$