calculate-1-2x-1-3-x-1-3-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 42085 by maxmathsup by imad last updated on 17/Aug/18 calculate∫1+∞2x+13+(x+1)3dx Commented by maxmathsup by imad last updated on 18/Aug/18 letA=∫1+∞2x+13+(x+1)3dxchangementx+1=tgiveA=∫2+∞2(t−1)+13+t3dt=∫2+∞2t−1t3+3dtalsochangement33u=tgiveA=∫233+∞2(33)u−13(1+u3)33duletα=2(33)=23(33)2∫α+∞uu3+1−33∫α+∞duu3+1=23(2α)2∫α+∞uu3+1du−2α∫α+∞duu3+1=∫α+∞83α2u−2αu3+1du=2α∫α+∞43αu−1u3+1du=23α2∫α+∞4u−3αu3+1duletdecomposeF(u)=4u−3αu3+1F(u)=4u−3α(u+1)(u2−u+1)=au+1+bu+cu2−u+1a=limu→−1(u+1)F(u)=−4−3α3limu→+∞uF(u)=0=a+b⇒b=4+3α3⇒F(u)=−3α+43(u+1)+13(3α+4)u+3cu2−u+1F(0)=−3α=−3α+43+c⇒c=−3α+3α+43=−6α+43⇒F(u)=−3α+43(u+1)+13(3α+4)u−6α+4u2−u+1⇒∫α+∞F(u)du=(−α−43)∫α+∞duu+1+3α+46∫α+∞2α−1+1u2−u+1du+4−6α3∫α+∞duu2−u+1=[(−α−43)ln∣u+1∣+3α+46ln(u2−u+1)]0+∞+4−6α3∫α+∞duu2−u+1… Answered by tanmay.chaudhury50@gmail.com last updated on 18/Aug/18 t=x+1dt=dx∫2∞2(t−1)+13+t3dt∫2∞2t+13+t3dt2t+1t3+(313)3=2t+1(t+313)(t2−313t+323)leta=3132t+1(t+a)(t2−ta+a2)=Pt+a+Qt+R(t2−ta+a2)2t+1=P(t2−ta+a2)+(t+a)(Qt+R)2t+1=t2(P)+t(−Pa)+(Pa2)+t2(Q)+t(R)+t(Qa)+aR2t+1=t2(P+Q)+t(−Pa+R+Qa)+(Pa2+aR)P+Q=0−Pa+Qa+R=2Pa2+aR=1Q=−P−Pa−Pa+1−Pa2a=2−2Pa2+1−Pa2=2a−3Pa2=2a−1P=1−2a3a2Q=2a−13a2R=1−Pa2a=1−1−2a3a=3−1+2a3a=2+2a3a∫2∞Pt+a+Qt+Rt2−ta+a2dtP∫2∞dtt+a+Q2∫2∞2t−a+at2−ta+a2+R∫2∞dtt2−2.t.a2+a24+3a24P∫2∞dtt+a+Q2∫2∞2t−at2−ta+a2dt+(Qa2+R)∫2∞dt(t−a2)2+(a32)2Pln∣(t+a)∣2∞+Q2ln∣(t2−ta+a2)∣2∞+(Qa2+R)×2a3∣tan−1(t−a2a32)∣2∞tobeclmpleted… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-107621Next Next post: If-1-a-1-b-1-c-1-a-b-c-then-prove-that-1-a-3-1-b-3-1-c-3-1-a-b-c-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.