Menu Close

calculate-1-2x-1-3-x-1-3-dx-




Question Number 42085 by maxmathsup by imad last updated on 17/Aug/18
calculate    ∫_1 ^(+∞)    ((2x+1)/(3 +(x+1)^3 ))dx
calculate1+2x+13+(x+1)3dx
Commented by maxmathsup by imad last updated on 18/Aug/18
let  A  = ∫_1 ^(+∞)    ((2x+1)/(3+(x+1)^3 )) dx  changement  x+1 =t give  A  = ∫_2 ^(+∞)    ((2(t−1) +1)/(3 +t^3 )) dt = ∫_2 ^(+∞)    ((2t−1)/(t^3  +3)) dt  also changement^3 (√3)u =t give  A =  ∫_(2/3_(√3) ) ^(+∞)       ((2(^3 (√3))u−1)/(3(1+u^3 )))^3 (√3)du   let  α =(2/((^3 (√3))))  =  (2/3)  (^3 (√3))^2 ∫_α ^(+∞)    (u/(u^3  +1))  −^3 (√3)   ∫_α ^(+∞)     (du/(u^3  +1))  =(2/3)((2/α))^2    ∫_α ^(+∞)   (u/(u^3  +1))du  −(2/α)  ∫_α ^(+∞)   (du/(u^3  +1))  = ∫_α ^(+∞)    (((8/(3α^2 ))u −(2/α))/(u^3  +1)) du  =(2/α)  ∫_α ^(+∞)     (((4/(3α))u −1)/(u^3  +1)) du  = (2/(3α^2 )) ∫_α ^(+∞)    ((4u−3α)/(u^3  +1)) du   let decompose F(u) =((4u−3α)/(u^3  +1))  F(u) =((4u−3α)/((u+1)(u^2 −u+1))) = (a/(u+1))  +((bu +c)/(u^2 −u +1))  a =lim_(u→−1) (u+1)F(u)=((−4−3α)/3)  lim_(u→+∞)  u F(u) =0 =a+b ⇒ b =((4+3α)/3)  ⇒  F(u) =−((3α+4)/(3(u+1)))  +(1/3)  (((3α+4)u  +3c)/(u^2 −u +1))  F(0) =−3α  =−((3α+4)/3)  +c ⇒c =−3α +((3α+4)/3) =((−6α +4)/3)  ⇒  F(u) = −((3α+4)/(3(u+1)))  +(1/3) (((3α+4)u  −6α +4)/(u^2  −u +1))  ⇒  ∫_α ^(+∞) F(u)du  =(−α−(4/3)) ∫_α ^(+∞)   (du/(u+1))   +((3α+4)/6)  ∫_α ^(+∞)   ((2α−1+1)/(u^2 −u+1))du   +((4−6α)/3) ∫_α ^(+∞)    (du/(u^2 −u +1))  =[(−α−(4/3))ln∣u+1∣ +((3α+4)/6)ln(u^2 −u+1)]_0 ^(+∞)  +((4−6α)/3) ∫_α ^(+∞)   (du/(u^2  −u +1)) ...
letA=1+2x+13+(x+1)3dxchangementx+1=tgiveA=2+2(t1)+13+t3dt=2+2t1t3+3dtalsochangement33u=tgiveA=233+2(33)u13(1+u3)33duletα=2(33)=23(33)2α+uu3+133α+duu3+1=23(2α)2α+uu3+1du2αα+duu3+1=α+83α2u2αu3+1du=2αα+43αu1u3+1du=23α2α+4u3αu3+1duletdecomposeF(u)=4u3αu3+1F(u)=4u3α(u+1)(u2u+1)=au+1+bu+cu2u+1a=limu1(u+1)F(u)=43α3limu+uF(u)=0=a+bb=4+3α3F(u)=3α+43(u+1)+13(3α+4)u+3cu2u+1F(0)=3α=3α+43+cc=3α+3α+43=6α+43F(u)=3α+43(u+1)+13(3α+4)u6α+4u2u+1α+F(u)du=(α43)α+duu+1+3α+46α+2α1+1u2u+1du+46α3α+duu2u+1=[(α43)lnu+1+3α+46ln(u2u+1)]0++46α3α+duu2u+1
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Aug/18
t=x+1   dt=dx  ∫_2 ^∞ ((2(t−1)+1)/(3+t^3 ))dt  ∫_2 ^∞ ((2t+1)/(3+t^3 ))dt  ((2t+1)/(t^3 +(3^(1/3) )^3 ))=((2t+1)/((t+3^(1/3) )(t^2 −3^(1/3) t+3^(2/3) )))  let a=3^(1/3)   ((2t+1)/((t+a)(t^2 −ta+a^2 )))=(P/(t+a))+((Qt+R)/((t^2 −ta+a^2 )))  2t+1=P(t^2 −ta+a^2 )+(t+a)(Qt+R)  2t+1=t^2 (P)+t(−Pa)+(Pa^2 )+t^2 (Q)+t(R)+t(Qa)+aR  2t+1=t^2 (P+Q)+t(−Pa+R+Qa)+(Pa^2 +aR)  P+Q=0  −Pa+Qa+R=2  Pa^2 +aR=1  Q=−P  −Pa−Pa+((1−Pa^2 )/a)=2  −2Pa^2 +1−Pa^2 =2a  −3Pa^2 =2a−1  P=((1−2a)/(3a^2 ))     Q=((2a−1)/(3a^2 ))  R=((1−Pa^2 )/a)=((1−((1−2a)/3))/a)=((3−1+2a)/(3a))=((2+2a)/(3a))  ∫_2 ^∞  (P/(t+a))+((Qt+R)/(t^2 −ta+a^2 ))  dt  P∫_2 ^∞ (dt/(t+a))+(Q/2)∫_2 ^∞ ((2t−a+a)/(t^2 −ta+a^2 ))+R∫_2 ^∞ (dt/(t^2 −2.t.(a/2)+(a^2 /4)+((3a^2 )/4)))  P∫_2 ^∞ (dt/(t+a))+(Q/2)∫_2 ^∞ ((2t−a)/(t^2 −ta+a^2 ))dt+(((Qa)/2)+R)∫_2 ^∞ (dt/((t−(a/2))^2 +(((a(√3))/2))^2 ))  Pln∣(t+a)∣_2 ^∞  +(Q/2)ln∣(t^2 −ta+a^2 )∣_2 ^∞ +(((Qa)/2)+R)×(2/(a(√3)))∣tan^(−1) (((t−(a/2))/((a(√3))/2)))∣_2 ^∞   to be clmpleted...
t=x+1dt=dx22(t1)+13+t3dt22t+13+t3dt2t+1t3+(313)3=2t+1(t+313)(t2313t+323)leta=3132t+1(t+a)(t2ta+a2)=Pt+a+Qt+R(t2ta+a2)2t+1=P(t2ta+a2)+(t+a)(Qt+R)2t+1=t2(P)+t(Pa)+(Pa2)+t2(Q)+t(R)+t(Qa)+aR2t+1=t2(P+Q)+t(Pa+R+Qa)+(Pa2+aR)P+Q=0Pa+Qa+R=2Pa2+aR=1Q=PPaPa+1Pa2a=22Pa2+1Pa2=2a3Pa2=2a1P=12a3a2Q=2a13a2R=1Pa2a=112a3a=31+2a3a=2+2a3a2Pt+a+Qt+Rt2ta+a2dtP2dtt+a+Q222ta+at2ta+a2+R2dtt22.t.a2+a24+3a24P2dtt+a+Q222tat2ta+a2dt+(Qa2+R)2dt(ta2)2+(a32)2Pln(t+a)2+Q2ln(t2ta+a2)2+(Qa2+R)×2a3tan1(ta2a32)2tobeclmpleted

Leave a Reply

Your email address will not be published. Required fields are marked *