Question Number 61041 by mathsolverby Abdo last updated on 28/May/19
![calculate ∫_1 ^(+∞) (([2x]−[x])/x^4 ) dx](https://www.tinkutara.com/question/Q61041.png)
Commented by maxmathsup by imad last updated on 29/May/19
![let A =∫_1 ^(+∞) (([2x]−[x])/x^4 ) dx ⇒ A =∫_1 ^(+∞) (([2x])/x^4 ) dx −∫_1 ^(+∞) (([x])/x^4 ) dx ∫_1 ^(+∞) (([2x])/x^4 ) dx =_(2x=t) 2^4 ∫_2 ^(+∞) (([t])/t^4 ) (dt/2) =8 ∫_2 ^(+∞) (([t])/t^4 ) dt =8 ( ∫_1 ^(+∞) (([t])/t^4 ) dt −∫_1 ^2 (([t])/t^4 ) dt) =8 ∫_1 ^(+∞) (([t])/t^4 ) dt −8 ∫_1 ^2 (dt/t^4 ) ∫_1 ^2 (dt/t^4 ) =[(1/(−4+1)) t^(−4+1) ]_1 ^2 =[−(1/3) t^(−3) ]_1 ^2 =−(1/3)(2^(−3) −1)=(1/3)(1−(1/8))=(1/3) (7/8) ⇒ ∫_1 ^(+∞) (([2x])/x^4 ) dx =8 ∫_1 ^(+∞) (([t])/t^4 )dt−(7/3) ⇒A =7 ∫_1 ^(+∞) (([x])/x^4 )dx −(7/3) ∫_1 ^(+∞) (([x])/x^4 ) dx =lim_(n→+∞) Σ_(k=1) ^(n−1) ∫_k ^(k+1) (([x])/x^4 ) dx =Σ_(n=1) ^∞ ∫_n ^(n+1) (([x])/x^4 ) dx =Σ_(n=1) ^∞ n ∫_n ^(n+1) (dx/x^4 ) =Σ_(n=1) ^∞ n[(1/(−4+1)) x^(−4+1) ]_n ^(n+1) =Σ_(n=1) ^∞ n[−(1/3) (1/x^3 )]_n ^(n+1) =−(1/3) Σ_(n=1) ^∞ n((1/((n+1)^3 )) −(1/n^3 )) =(1/3) Σ_(n=1) ^∞ (1/n^2 ) −(1/3) Σ_(n=1) ^∞ (n/((n+1)^3 )) =(1/3)ξ(2)−(1/3)Σ_(n=1) ^∞ ((n+1−1)/((n+1)^3 )) =(1/3)ξ(2)−(1/3) Σ_(n=1) ^∞ (1/((n+1)^2 )) +(1/3)Σ_(n=1) ^∞ (1/((n+1)^3 )) Σ_(n=1) ^∞ (1/((n+1)^2 ))=Σ_(n=2) ^∞ (1/n^2 ) =ξ(2)−1 Σ_(n=1) ^∞ (1/((n+1)^3 )) =Σ_(n=2) ^∞ (1/n^3 ) =ξ(3)−1 ⇒ ∫_1 ^(+∞) (([x])/x^4 ) dx = (1/3)ξ(2) −(1/3)(ξ(2)−1) +(1/3) (ξ(3)−1) =(1/3) +(1/3)ξ(3)−(1/3) =(1/3)ξ(3) ⇒ A =(7/3)ξ(3)−(7/3) .](https://www.tinkutara.com/question/Q61094.png)
Answered by perlman last updated on 28/May/19
![∫_1 ^(+∞) (([2x]−[x])/x^4 )dx=Σ_(k=1) ^(+∞) ∫_((k+1)/2) ^((k+2)/2) (([2x])/x^(4 ) )dx−Σ_(k=1) ^(+∞) ∫_k ^(k+1) (([x])/x^4 )dx [2x]=k+1 ∀x∈[((k+1)/2),((k+2)/2)[ [x]=k ∀x∈[k,k+1[ ∫_1 ^(+∞) (([2x]−[x])/x^4 )=lim_(n→∞) Σ_(k=1) ^n [∫_((k+1)/2) ^((k+2)/2) ((k+1)/x^4 )dx−∫_k ^(k+1) (k/x^(4 ) )dx] =lim_(n→∞) Σ_(k=1) ^(k=n) [((k+1)/(−3(((k+2)/2))^3 ))+((k+1)/(3(((k+1)/2))^3 ))+(k/(3(k+1)^3 ))−(k/(3k^3 ))] =lim_(n→∞) Σ_(k=1) ^(k=n) [((−8(k+1))/( 3(k+2)^3 ))+(8/(3(k+1)^2 ))+(k/(3(k+1)^3 ))−(1/(3k^2 ))] we use (x/((x+1)^3 ))=(1/((x+1)^2 ))−(1/((x+1)^3 )) andlim_(x→∞) Σ_(k=1) ^x (1/k^z )=ζ(z) we find limΣ_(k=1) ^n [((−8)/(3(k+2)^2 ))+(8/(3(k+2)^3 ))+(8/(3(k+1)^2 ))+(1/(3(k+1)^2 ))−(1/(3(k+1)^3 ))−(1/(3k^2 ))] =lim [(8/(12))−(8/(3(n+2)^2 ))+(8/3)Σ_(k=1) ^n (1/((k+2)^3 ))+(1/(3(n+1)^2 ))−(1/3)−(1/3)Σ_(k=1) ^n (1/((k+1)^3 ))] =(8/(12))−(1/3)+(8/3)Σ_(k=1) ^∞ (1/((k+2)^3 ))−(1/3)Σ_(k=1) ^∞ (1/((k+1)^3 ))=(1/3)+(8/3)(ζ(3)−1−(1/8))−(1/3)(ζ(3)−1) =(1/3)+(7/3)ζ(3)−3+(1/3)=(7/3)ζ(3)−(7/3)=(7/3)(ζ(3)−1)](https://www.tinkutara.com/question/Q61065.png)
Commented by Tawa1 last updated on 28/May/19

Commented by Tawa1 last updated on 28/May/19

Commented by perlman last updated on 29/May/19
![=Σ_(k=1) ^(+∞) (1/(k(k+1)(k+2))) (1/(x(x+1)(x+2)))=(1/(2x))−(1/(x+1))+(1/(2(x+2))) Σ_(k=1) ^(+∞) (1/(k(k+1)(k+2)))=lim_(x→+∞) Σ_(k=1) ^x [(1/(2k))−(1/(k+1))+(1/(2(k+2)))] =lim_(x→+∞) Σ_(k=1) ^x (1/(2k))−Σ_(k=1) ^x (1/(k+1))+Σ(1/(2(k+2))) put r=k+1 in the seconde sum and v=k+2 in the 3rd =lim_(x→+∞) Σ_(k=1) ^x (1/(2k))−Σ_(r=2) ^(x+1) (1/r)+Σ_(v=3) ^(x+2) (1/(2v))=lim_(x→+∞) ((1/2)+(1/4)+Σ_(k=3) ^x (1/(2k))−Σ_2 ^(x+1) (1/k)+Σ_3 ^x (1/(2k))+(1/(2x+2))+(1/(2(x+2)))) =lim_(x→+∞) ((3/4)+2Σ_(k=3) ^x (1/(2k))−(1/2)−Σ_(k=3) ^x (1/k)−(1/(x+1))+(1/(2x+2))+(1/(2x+4))) =lim_(x→+∞) ((1/4)+Σ_3 ^x (1/k)−Σ_3 ^x (1/k)−(1/(2x+2))+(1/(2x+4))) =lim_(x→+∞) ((1/4)−(1/(2x+2))+(1/(2x+4)))=(1/4)](https://www.tinkutara.com/question/Q61087.png)
Commented by maxmathsup by imad last updated on 29/May/19

Commented by perlman last updated on 29/May/19

Commented by perlman last updated on 29/May/19

Commented by Tawa1 last updated on 29/May/19

Commented by Tawa1 last updated on 29/May/19

Commented by perlman last updated on 29/May/19

Commented by perlman last updated on 29/May/19

Commented by Tawa1 last updated on 29/May/19

Commented by tanmay last updated on 29/May/19
![T_n =(1/([1+(n−1)3][2+(n−1)3][3+(n−1)3])) T_n =(1/((3n−2)((3n−1)(3n))) S_n =C−(1/(3×1×(3n−1)3n)) S_1 =C−(1/(18))=T_1 =(1/6) C=(1/6)+(1/(18))=((3+1)/(18))=(2/9) S_n =(2/9)−(1/(9n(3n−1))) S_∞ =(2/9) pls check...](https://www.tinkutara.com/question/Q61139.png)