Menu Close

calculate-1-2x-x-x-4-dx-




Question Number 61041 by mathsolverby Abdo last updated on 28/May/19
calculate ∫_1 ^(+∞)  (([2x]−[x])/x^4 ) dx
calculate1+[2x][x]x4dx
Commented by maxmathsup by imad last updated on 29/May/19
let A =∫_1 ^(+∞)  (([2x]−[x])/x^4 ) dx ⇒ A =∫_1 ^(+∞)  (([2x])/x^4 ) dx −∫_1 ^(+∞)  (([x])/x^4 ) dx  ∫_1 ^(+∞)  (([2x])/x^4 ) dx =_(2x=t)   2^4   ∫_2 ^(+∞)  (([t])/t^4 )  (dt/2) =8 ∫_2 ^(+∞)  (([t])/t^4 ) dt  =8 ( ∫_1 ^(+∞)  (([t])/t^4 ) dt −∫_1 ^2   (([t])/t^4 ) dt) =8 ∫_1 ^(+∞)  (([t])/t^4 ) dt −8 ∫_1 ^2   (dt/t^4 )  ∫_1 ^2   (dt/t^4 ) =[(1/(−4+1)) t^(−4+1) ]_1 ^2  =[−(1/3) t^(−3) ]_1 ^2  =−(1/3)(2^(−3) −1)=(1/3)(1−(1/8))=(1/3) (7/8) ⇒  ∫_1 ^(+∞)  (([2x])/x^4 ) dx =8 ∫_1 ^(+∞)  (([t])/t^4 )dt−(7/3) ⇒A =7 ∫_1 ^(+∞)  (([x])/x^4 )dx −(7/3)  ∫_1 ^(+∞)    (([x])/x^4 ) dx =lim_(n→+∞)    Σ_(k=1) ^(n−1)  ∫_k ^(k+1)  (([x])/x^4 ) dx  =Σ_(n=1) ^∞   ∫_n ^(n+1)  (([x])/x^4 ) dx =Σ_(n=1) ^∞   n ∫_n ^(n+1)  (dx/x^4 ) =Σ_(n=1) ^∞ n[(1/(−4+1)) x^(−4+1) ]_n ^(n+1)   =Σ_(n=1) ^∞ n[−(1/3) (1/x^3 )]_n ^(n+1)  =−(1/3) Σ_(n=1) ^∞  n((1/((n+1)^3 )) −(1/n^3 ))  =(1/3) Σ_(n=1) ^∞  (1/n^2 ) −(1/3) Σ_(n=1) ^∞  (n/((n+1)^3 ))  =(1/3)ξ(2)−(1/3)Σ_(n=1) ^∞  ((n+1−1)/((n+1)^3 )) =(1/3)ξ(2)−(1/3) Σ_(n=1) ^∞  (1/((n+1)^2 )) +(1/3)Σ_(n=1) ^∞  (1/((n+1)^3 ))  Σ_(n=1) ^∞   (1/((n+1)^2 ))=Σ_(n=2) ^∞  (1/n^2 ) =ξ(2)−1  Σ_(n=1) ^∞  (1/((n+1)^3 )) =Σ_(n=2) ^∞  (1/n^3 ) =ξ(3)−1 ⇒  ∫_1 ^(+∞)  (([x])/x^4 ) dx = (1/3)ξ(2) −(1/3)(ξ(2)−1) +(1/3) (ξ(3)−1)  =(1/3) +(1/3)ξ(3)−(1/3) =(1/3)ξ(3) ⇒ A =(7/3)ξ(3)−(7/3) .
letA=1+[2x][x]x4dxA=1+[2x]x4dx1+[x]x4dx1+[2x]x4dx=2x=t242+[t]t4dt2=82+[t]t4dt=8(1+[t]t4dt12[t]t4dt)=81+[t]t4dt812dtt412dtt4=[14+1t4+1]12=[13t3]12=13(231)=13(118)=13781+[2x]x4dx=81+[t]t4dt73A=71+[x]x4dx731+[x]x4dx=limn+k=1n1kk+1[x]x4dx=n=1nn+1[x]x4dx=n=1nnn+1dxx4=n=1n[14+1x4+1]nn+1=n=1n[131x3]nn+1=13n=1n(1(n+1)31n3)=13n=11n213n=1n(n+1)3=13ξ(2)13n=1n+11(n+1)3=13ξ(2)13n=11(n+1)2+13n=11(n+1)3n=11(n+1)2=n=21n2=ξ(2)1n=11(n+1)3=n=21n3=ξ(3)11+[x]x4dx=13ξ(2)13(ξ(2)1)+13(ξ(3)1)=13+13ξ(3)13=13ξ(3)A=73ξ(3)73.
Answered by perlman last updated on 28/May/19
∫_1 ^(+∞) (([2x]−[x])/x^4 )dx=Σ_(k=1) ^(+∞) ∫_((k+1)/2) ^((k+2)/2)    (([2x])/x^(4 ) )dx−Σ_(k=1) ^(+∞) ∫_k ^(k+1) (([x])/x^4 )dx  [2x]=k+1  ∀x∈[((k+1)/2),((k+2)/2)[  [x]=k  ∀x∈[k,k+1[  ∫_1 ^(+∞) (([2x]−[x])/x^4 )=lim_(n→∞) Σ_(k=1) ^n [∫_((k+1)/2) ^((k+2)/2) ((k+1)/x^4 )dx−∫_k ^(k+1) (k/x^(4 ) )dx]  =lim_(n→∞) Σ_(k=1) ^(k=n) [((k+1)/(−3(((k+2)/2))^3 ))+((k+1)/(3(((k+1)/2))^3 ))+(k/(3(k+1)^3 ))−(k/(3k^3 ))]  =lim_(n→∞) Σ_(k=1) ^(k=n) [((−8(k+1))/(   3(k+2)^3 ))+(8/(3(k+1)^2 ))+(k/(3(k+1)^3  ))−(1/(3k^2 ))]  we use  (x/((x+1)^3 ))=(1/((x+1)^2 ))−(1/((x+1)^3 )) andlim_(x→∞) Σ_(k=1) ^x (1/k^z )=ζ(z)  we find   limΣ_(k=1) ^n [((−8)/(3(k+2)^2 ))+(8/(3(k+2)^3 ))+(8/(3(k+1)^2 ))+(1/(3(k+1)^2 ))−(1/(3(k+1)^3 ))−(1/(3k^2 ))]  =lim [(8/(12))−(8/(3(n+2)^2 ))+(8/3)Σ_(k=1) ^n (1/((k+2)^3 ))+(1/(3(n+1)^2 ))−(1/3)−(1/3)Σ_(k=1) ^n (1/((k+1)^3 ))]  =(8/(12))−(1/3)+(8/3)Σ_(k=1) ^∞ (1/((k+2)^3 ))−(1/3)Σ_(k=1) ^∞ (1/((k+1)^3 ))=(1/3)+(8/3)(ζ(3)−1−(1/8))−(1/3)(ζ(3)−1)  =(1/3)+(7/3)ζ(3)−3+(1/3)=(7/3)ζ(3)−(7/3)=(7/3)(ζ(3)−1)
1+[2x][x]x4dx=+k=1k+12k+22[2x]x4dx+k=1k+1k[x]x4dx[2x]=k+1x[k+12,k+22[[x]=kx[k,k+1[+1[2x][x]x4=limnnk=1[k+22k+12k+1x4dxk+1kkx4dx]=limnk=nk=1[k+13(k+22)3+k+13(k+12)3+k3(k+1)3k3k3]=limnk=nk=1[8(k+1)3(k+2)3+83(k+1)2+k3(k+1)313k2]weusex(x+1)3=1(x+1)21(x+1)3andlimxxk=11kz=ζ(z)wefindlimnk=1[83(k+2)2+83(k+2)3+83(k+1)2+13(k+1)213(k+1)313k2]=lim[81283(n+2)2+83nk=11(k+2)3+13(n+1)21313nk=11(k+1)3]=81213+83k=11(k+2)313k=11(k+1)3=13+83(ζ(3)118)13(ζ(3)1)=13+73ζ(3)3+13=73ζ(3)73=73(ζ(3)1)
Commented by Tawa1 last updated on 28/May/19
Commented by Tawa1 last updated on 28/May/19
Please sir,  sum the series.
Pleasesir,sumtheseries.
Commented by perlman last updated on 29/May/19
=Σ_(k=1) ^(+∞) (1/(k(k+1)(k+2)))  (1/(x(x+1)(x+2)))=(1/(2x))−(1/(x+1))+(1/(2(x+2)))  Σ_(k=1) ^(+∞) (1/(k(k+1)(k+2)))=lim_(x→+∞) Σ_(k=1) ^x [(1/(2k))−(1/(k+1))+(1/(2(k+2)))]  =lim_(x→+∞) Σ_(k=1) ^x (1/(2k))−Σ_(k=1) ^x (1/(k+1))+Σ(1/(2(k+2)))  put r=k+1 in the seconde sum  and v=k+2 in the 3rd  =lim_(x→+∞) Σ_(k=1) ^x (1/(2k))−Σ_(r=2) ^(x+1) (1/r)+Σ_(v=3) ^(x+2) (1/(2v))=lim_(x→+∞) ((1/2)+(1/4)+Σ_(k=3) ^x (1/(2k))−Σ_2 ^(x+1) (1/k)+Σ_3 ^x (1/(2k))+(1/(2x+2))+(1/(2(x+2))))  =lim_(x→+∞) ((3/4)+2Σ_(k=3) ^x (1/(2k))−(1/2)−Σ_(k=3) ^x (1/k)−(1/(x+1))+(1/(2x+2))+(1/(2x+4)))  =lim_(x→+∞) ((1/4)+Σ_3 ^x (1/k)−Σ_3 ^x (1/k)−(1/(2x+2))+(1/(2x+4)))  =lim_(x→+∞) ((1/4)−(1/(2x+2))+(1/(2x+4)))=(1/4)
=+k=11k(k+1)(k+2)1x(x+1)(x+2)=12x1x+1+12(x+2)+k=11k(k+1)(k+2)=limx+xk=1[12k1k+1+12(k+2)]=limx+xk=112kxk=11k+1+Σ12(k+2)putr=k+1inthesecondesumandv=k+2inthe3rd=limx+xk=112kx+1r=21r+x+2v=312v=limx+(12+14+xk=312kx+121k+x312k+12x+2+12(x+2))=limx+(34+2xk=312k12xk=31k1x+1+12x+2+12x+4)=limx+(14+x31kx31k12x+2+12x+4)=limx+(1412x+2+12x+4)=14
Commented by maxmathsup by imad last updated on 29/May/19
look sir  Σ_(k=1) ^n  (1/(k(k+1)(k+2))) =(1/(1.2.3)) +(1/(2.3.4)) +(1/(3.4.5)) +...so this isn t  the sum given at the question...!
looksirk=1n1k(k+1)(k+2)=11.2.3+12.3.4+13.4.5+sothisisntthesumgivenatthequestion!
Commented by perlman last updated on 29/May/19
2nd  un=(1/(n(n+1)(n+2)))  serie of therm un convergent  let f(x)=Σ_(n=1  ) ^(+∞) (x^(n+2) /(n(n+1)(n+2)))  f^((1)) (x)=Σ_(n=1) ^(+∞) (x^(n+1) /(n(n+1)))  f^((2)) (x)=Σ_(n=1) ^(+∞) (x^n /n)=−ln(1−x)“devlop of ln(1−z) in power series”  f^((1)) (x)=∫f^((1)) (x)dx=∫−ln(1−x)dx=−∫ln(1−x)dx=(1−x)ln(1−x)+x“caus f^((1)) (0)=0”  f(x)=∫f^((1)) dx=∫(1−x)ln(1−x)+x dx=((−(1−x)^2 ln(1−x))/2)+(((1−x)^2 )/4)+(x^2 /2)+c  f(0)=0===≥(1/4)+c=0    so c=−(1/4)  f(x)=((−(1−x)^2 ln(1−x))/2)+(((1−x)^2 )/4)+(x^2 /2)−(1/4)  for x=1 we get f(1)=Σ_(k=1) ^(+∞) (1/(k(k+1)(k+2)))=(1/2)−(1/4)=(1/4)
2ndun=1n(n+1)(n+2)serieofthermunconvergentletf(x)=+n=1xn+2n(n+1)(n+2)f(1)(x)=+n=1xn+1n(n+1)f(2)(x)=+n=1xnn=ln(1x)devlopofln(1z)inpowerseriesf(1)(x)=f(1)(x)dx=ln(1x)dx=ln(1x)dx=(1x)ln(1x)+xcausf(1)(0)=0f(x)=f(1)dx=(1x)ln(1x)+xdx=(1x)2ln(1x)2+(1x)24+x22+cf(0)=0===⩾14+c=0soc=14f(x)=(1x)2ln(1x)2+(1x)24+x2214forx=1wegetf(1)=+k=11k(k+1)(k+2)=1214=14
Commented by perlman last updated on 29/May/19
y′re welcom
yrewelcom
Commented by Tawa1 last updated on 29/May/19
Wow. God bless you sir.  Sir,   Does the series has sum of   nth  term
Wow.Godblessyousir.Sir,Doestheserieshassumofnthterm
Commented by Tawa1 last updated on 29/May/19
I want to know if the sum to nth term correspond to the given series.  that is,   using the sum of nth term formular to verify.  S_1  ,  S_2  ,  S_3   ...  if it correspond
Iwanttoknowifthesumtonthtermcorrespondtothegivenseries.thatis,usingthesumofnthtermformulartoverify.S1,S2,S3ifitcorrespond
Commented by perlman last updated on 29/May/19
sir ther is mistak in my  answer i will fix it
sirtherismistakinmyansweriwillfixit
Commented by perlman last updated on 29/May/19
the sum is Σ_(k=1) ^(+∞) (1/(3k(3k−1)(3k−2))).and notΣ(1/(k(k+1)(k+2)))sorry for this/mistak
thesumis+k=113k(3k1)(3k2).andnotΣ1k(k+1)(k+2)sorryforthis/mistak
Commented by Tawa1 last updated on 29/May/19
Okay sir, when you check. Tell me sum of the first n terms
Okaysir,whenyoucheck.Tellmesumofthefirstnterms
Commented by tanmay last updated on 29/May/19
T_n =(1/([1+(n−1)3][2+(n−1)3][3+(n−1)3]))  T_n =(1/((3n−2)((3n−1)(3n)))  S_n =C−(1/(3×1×(3n−1)3n))  S_1 =C−(1/(18))=T_1 =(1/6)  C=(1/6)+(1/(18))=((3+1)/(18))=(2/9)  S_n =(2/9)−(1/(9n(3n−1)))  S_∞ =(2/9)  pls check...
Tn=1[1+(n1)3][2+(n1)3][3+(n1)3]Tn=1(3n2)((3n1)(3n)Sn=C13×1×(3n1)3nS1=C118=T1=16C=16+118=3+118=29Sn=2919n(3n1)S=29plscheck

Leave a Reply

Your email address will not be published. Required fields are marked *