Menu Close

calculate-1-3-1-2-x-1-x-dx-with-x-0-t-x-1-e-t-dt-with-x-gt-0-




Question Number 53950 by maxmathsup by imad last updated on 27/Jan/19
 calculate ∫_(1/3) ^(1/2)   Γ(x)Γ(1−x)dx   with Γ(x) =∫_0 ^∞  t^(x−1)  e^(−t) dt    with x>0 .
calculate1312Γ(x)Γ(1x)dxwithΓ(x)=0tx1etdtwithx>0.
Commented by maxmathsup by imad last updated on 30/Jan/19
we have for  0<x<1   Γ(x).Γ(1−x)=(π/(sin(πx)))(  complments formula) ⇒  ∫_(1/3) ^(1/2)  Γ(x).Γ(1−x)dx =π∫_(1/3) ^(1/2)   (dx/(sin(πx))) =_(πx =t)    π ∫_(π/3) ^(π/2)    (dt/(πsin(t)))  =∫_(π/3) ^(π/2)   (dt/(sint)) =_(tan((t/2))=u)     ∫_(1/( (√3))) ^1    (1/((2u)/(1+u^2 ))) ((2du)/(1+u^2 )) =∫_(1/( (√3))) ^1   (du/u) =[ln∣u∣]_(1/( (√3))) ^1 =−ln((1/( (√3))))  =ln((√3)) .
wehavefor0<x<1Γ(x).Γ(1x)=πsin(πx)(complmentsformula)1312Γ(x).Γ(1x)dx=π1312dxsin(πx)=πx=tππ3π2dtπsin(t)=π3π2dtsint=tan(t2)=u13112u1+u22du1+u2=131duu=[lnu]131=ln(13)=ln(3).

Leave a Reply

Your email address will not be published. Required fields are marked *