Menu Close

calculate-1-3-dx-x-2-1-2-x-2-5-




Question Number 123710 by Bird last updated on 27/Nov/20
calculate  ∫_1 ^(√3)     (dx/((x^2 +1)^2 (x+2)^5 ))
calculate13dx(x2+1)2(x+2)5
Answered by MJS_new last updated on 27/Nov/20
Ostrogradski gives  ∫(dx/((x^2 +1)^2 (x+2)^5 ))=  =−((372x^5 +2502x^4 +6016x^3 +6383x^2 +4144x+3131)/(7500(x^2 +1)(x+2)^4 ))−       −(1/(625))∫((31x+17)/((x^2 +1)(x+2)))dx  −(1/(625))∫((31x+17)/((x^2 +1)(x+2)))dx=  =−((79)/(6250))∫((2x)/(x^2 +1))dx+(3/(3125))∫(dx/(x^2 +1))+((79)/(3125))∫(dx/(x+2))=  =−((79)/(6250))ln (x^2 +1) +(3/(3125))arctan x +((79)/(3125))ln ∣x+2∣ +C  ⇒ answer is  (π/(12500))−((146149)/(81000))+((2609(√3))/(2500))+((79)/(6250))ln ((7+4(√3))/(18))
Ostrogradskigivesdx(x2+1)2(x+2)5==372x5+2502x4+6016x3+6383x2+4144x+31317500(x2+1)(x+2)4162531x+17(x2+1)(x+2)dx162531x+17(x2+1)(x+2)dx==7962502xx2+1dx+33125dxx2+1+793125dxx+2==796250ln(x2+1)+33125arctanx+793125lnx+2+Canswerisπ1250014614981000+260932500+796250ln7+4318
Commented by mathmax by abdo last updated on 28/Nov/20
thank you sir mjs
thankyousirmjs
Answered by mathmax by abdo last updated on 28/Nov/20
complex method  I =∫_1 ^(√3)    (dx/((x−i)^2 (x+i)^2 (x+2)^5 )) =∫_1 ^(√3)    (dx/((((x−i)/(x+i)))^2 (x+i)^4 (x+2)^5 ))  we do the changement ((x−i)/(x+i))=t ⇒x−i=tx+it ⇒(1−t)x=it+i ⇒  x=i((1+t)/(1−t)) ⇒(dx/dt) =i((1−t−(1+t)(−1))/((1−t)^2 ))=i ((1−t+1+t)/((1−t)^2 ))=((2i)/((1−t)^2 ))  x+i =((i+it)/(1−t)) +i =((i+it+i−it)/(1−t)) =((2i)/(1−t))  x+2 =((i+it)/(1−t)) +2 =((i+it+2−2t)/(1−t)) =(((−2+i)t +2+i)/(1−t)) ⇒  I =∫_((1−i)/(1+i)) ^(((√3)−i)/( (√3)+i))        ((2i)/((1−t)^2 t^2 (((2i)^4 )/((1−t)^4 ))((((−2+i)t+2+i)^5 )/((1−t)^5 ))))dt  =((−1)/((2i)^3 ))∫_((1−i)/(1+i)) ^(((√3)−i)/( (√3)+i))       (((t−1)^9 )/((t−1)^2 t^2 {(−2+i)t +2+i}^5 ))dt  =−(i/8)∫_((1−i)/(1+i)) ^(((√3)−i)/( (√3)+i))     (((t−1)^7 )/(t^2 {(−2+i)t+2+i}^5 ))dt  =(i/8) ∫_((1−i)/(1+i)) ^(((√3)−i)/( (√3)+i))    ((Σ_(k=0) ^7 (−1)^k  C_7 ^k t^k (−1)^(7−k) )/(t^2 {(−2+i)t+2+i}^5 ))dt  rst decomposition....be continued...
complexmethodI=13dx(xi)2(x+i)2(x+2)5=13dx(xix+i)2(x+i)4(x+2)5wedothechangementxix+i=txi=tx+it(1t)x=it+ix=i1+t1tdxdt=i1t(1+t)(1)(1t)2=i1t+1+t(1t)2=2i(1t)2x+i=i+it1t+i=i+it+iit1t=2i1tx+2=i+it1t+2=i+it+22t1t=(2+i)t+2+i1tI=1i1+i3i3+i2i(1t)2t2(2i)4(1t)4((2+i)t+2+i)5(1t)5dt=1(2i)31i1+i3i3+i(t1)9(t1)2t2{(2+i)t+2+i}5dt=i81i1+i3i3+i(t1)7t2{(2+i)t+2+i}5dt=i81i1+i3i3+ik=07(1)kC7ktk(1)7kt2{(2+i)t+2+i}5dtrstdecomposition.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *