calculate-1-3-dx-x-2-1-2-x-2-5- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 123710 by Bird last updated on 27/Nov/20 calculate∫13dx(x2+1)2(x+2)5 Answered by MJS_new last updated on 27/Nov/20 Ostrogradskigives∫dx(x2+1)2(x+2)5==−372x5+2502x4+6016x3+6383x2+4144x+31317500(x2+1)(x+2)4−−1625∫31x+17(x2+1)(x+2)dx−1625∫31x+17(x2+1)(x+2)dx==−796250∫2xx2+1dx+33125∫dxx2+1+793125∫dxx+2==−796250ln(x2+1)+33125arctanx+793125ln∣x+2∣+C⇒answerisπ12500−14614981000+260932500+796250ln7+4318 Commented by mathmax by abdo last updated on 28/Nov/20 thankyousirmjs Answered by mathmax by abdo last updated on 28/Nov/20 complexmethodI=∫13dx(x−i)2(x+i)2(x+2)5=∫13dx(x−ix+i)2(x+i)4(x+2)5wedothechangementx−ix+i=t⇒x−i=tx+it⇒(1−t)x=it+i⇒x=i1+t1−t⇒dxdt=i1−t−(1+t)(−1)(1−t)2=i1−t+1+t(1−t)2=2i(1−t)2x+i=i+it1−t+i=i+it+i−it1−t=2i1−tx+2=i+it1−t+2=i+it+2−2t1−t=(−2+i)t+2+i1−t⇒I=∫1−i1+i3−i3+i2i(1−t)2t2(2i)4(1−t)4((−2+i)t+2+i)5(1−t)5dt=−1(2i)3∫1−i1+i3−i3+i(t−1)9(t−1)2t2{(−2+i)t+2+i}5dt=−i8∫1−i1+i3−i3+i(t−1)7t2{(−2+i)t+2+i}5dt=i8∫1−i1+i3−i3+i∑k=07(−1)kC7ktk(−1)7−kt2{(−2+i)t+2+i}5dtrstdecomposition….becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-123708Next Next post: Question-189250 Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.