Menu Close

calculate-1-3-x-e-x-1-dx-




Question Number 35675 by abdo imad last updated on 21/May/18
calculate  ∫_1 ^3    (x/(e^x  −1))dx ..
calculate13xex1dx..
Commented by prof Abdo imad last updated on 25/May/18
I  = ∫_1 ^3   ((x e^(−x) )/(1−e^(−x) ))dx =∫_1 ^3 ( Σ_(n=0) ^∞  e^(−nx) )x e^(−x)  dx  = Σ_(n=0) ^∞     ∫_1 ^3   x e^(−(n+1)x)  dx = Σ_(n=0) ^∞  A_n   with  A_n  = ∫_1 ^3   x.e^(−(n+1)x) dx  .changement (n+1)x=t  give A_n  =∫_(n+1) ^(3(n+1))   (t/(n+1)) e^(−t)    (dt/(n+1))  = (1/((n+1)^2 )) ∫_(n+1) ^(3(n+1))   t^  e^(−t)  dt  by parts  ∫_(n+1) ^(3(n+1))   t e^(−t)  dt = [ −t e^(−t) ]_(n+1) ^(3(n+1))  +∫_(n+1) ^(3(n+1))   e^(−t) dt  = (n+1)e^(−(n+1))  −3(n+1) e^(−3(n+1))    +[ −e^(−t) ]_(n+1) ^(3(n+1))   =(n+1) e^(−(n+1))  −3(n+1) e^(−3(n+1))  +e^(−(n+1))  −e^(−3(n+1))   A_n   = (e^(−(n+1)) /(n+1)) −3(e^(−3(n+1)) /(n+1))  + (e^(−(n+1)) /((n+1)^2 )) −(e^(−3(n+1)) /((n+1)^2 ))  Σ_(n=0) ^∞  A_n  = Σ_(n=0) ^∞    (e^(−(n+1)) /(n+1)) −3 Σ_(n=0) ^∞  (e^(−3(n+1)) /(n+1))  + Σ_(n=0) ^∞    (e^(−(n+1)) /((n+1)^2 ))  −Σ_(n=0) ^∞    (e^(−3(n+1)) /((n+1)^2 ))  = Σ_(n=1) ^∞   (e^(−n) /n)  −3 Σ_(n=1) ^∞   (e^(−3n) /n)  +Σ_(n=1) ^∞   (e^(−n) /n^2 )  −Σ_(n=1) ^∞    (e^(−3n) /n^2 )    ....be continued....
I=13xex1exdx=13(n=0enx)xexdx=n=013xe(n+1)xdx=n=0AnwithAn=13x.e(n+1)xdx.changement(n+1)x=tgiveAn=n+13(n+1)tn+1etdtn+1=1(n+1)2n+13(n+1)tetdtbypartsn+13(n+1)tetdt=[tet]n+13(n+1)+n+13(n+1)etdt=(n+1)e(n+1)3(n+1)e3(n+1)+[et]n+13(n+1)=(n+1)e(n+1)3(n+1)e3(n+1)+e(n+1)e3(n+1)An=e(n+1)n+13e3(n+1)n+1+e(n+1)(n+1)2e3(n+1)(n+1)2n=0An=n=0e(n+1)n+13n=0e3(n+1)n+1+n=0e(n+1)(n+1)2n=0e3(n+1)(n+1)2=n=1enn3n=1e3nn+n=1enn2n=1e3nn2.becontinued.

Leave a Reply

Your email address will not be published. Required fields are marked *