calculate-1-3-x-e-x-1-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 35675 by abdo imad last updated on 21/May/18 calculate∫13xex−1dx.. Commented by prof Abdo imad last updated on 25/May/18 I=∫13xe−x1−e−xdx=∫13(∑n=0∞e−nx)xe−xdx=∑n=0∞∫13xe−(n+1)xdx=∑n=0∞AnwithAn=∫13x.e−(n+1)xdx.changement(n+1)x=tgiveAn=∫n+13(n+1)tn+1e−tdtn+1=1(n+1)2∫n+13(n+1)te−tdtbyparts∫n+13(n+1)te−tdt=[−te−t]n+13(n+1)+∫n+13(n+1)e−tdt=(n+1)e−(n+1)−3(n+1)e−3(n+1)+[−e−t]n+13(n+1)=(n+1)e−(n+1)−3(n+1)e−3(n+1)+e−(n+1)−e−3(n+1)An=e−(n+1)n+1−3e−3(n+1)n+1+e−(n+1)(n+1)2−e−3(n+1)(n+1)2∑n=0∞An=∑n=0∞e−(n+1)n+1−3∑n=0∞e−3(n+1)n+1+∑n=0∞e−(n+1)(n+1)2−∑n=0∞e−3(n+1)(n+1)2=∑n=1∞e−nn−3∑n=1∞e−3nn+∑n=1∞e−nn2−∑n=1∞e−3nn2….becontinued…. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-166738Next Next post: find-f-x-0-x-ch-4-t-dt- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.