Menu Close

calculate-1-6-1-x-1-x-2-x-dx-




Question Number 38714 by maxmathsup by imad last updated on 28/Jun/18
calculate   ∫_1 ^6     (((−1)^([x]) )/(1+x^2 [x]))dx
calculate16(1)[x]1+x2[x]dx
Commented by abdo mathsup 649 cc last updated on 29/Jun/18
I = Σ_(k=1) ^5  ∫_k ^(k+1)    (((−1)^k )/(1+kx^2 ))dx  =Σ_(k=1) ^5  (−1)^k   ∫_k ^(k+1)   (dx/(1+kx^2 )) changement  x(√k)=t give ∫_k ^(k+1)   (dx/(1+kx^2 )) = ∫_(k(√k)) ^((k+1)(√k))    (1/(1+t^2 )) (dt/( (√k))) ⇒  I =Σ_(k=1) ^5  (((−1)^k )/( (√k))) ∫_(k(√k)) ^((k+1)(√k))    (dt/(1+t^2 ))  =Σ_(k=1) ^5   (((−1)^k )/( (√k))) { arctan(k+1)(√k) −arctan(k(√k))}  =−arctan(2) +(π/4) +(1/( (√2))){ arctan(3(√2))−arctan(2(√(2)))  −(1/( (√3))){ arctan(4(√3))−arctan(3(√3))}  +(1/2){ar4tan(10) −arctan(8)} −(1/( (√5))){arctan6(√(5))) −arctan(5(√5)).
I=k=15kk+1(1)k1+kx2dx=k=15(1)kkk+1dx1+kx2changementxk=tgivekk+1dx1+kx2=kk(k+1)k11+t2dtkI=k=15(1)kkkk(k+1)kdt1+t2=k=15(1)kk{arctan(k+1)karctan(kk)}=arctan(2)+π4+12{arctan(32)arctan(22)13{arctan(43)arctan(33)}+12{ar4tan(10)arctan(8)}15{arctan65)arctan(55).
Answered by tanmay.chaudhury50@gmail.com last updated on 29/Jun/18
∫_1 ^2 (((−1)^1 )/(1+1×x^2 ))+∫_2 ^3 (((−1)^2 )/(1+2x^2 ))+∫_3 ^4 (((−1)^3 )/(1+3x^2 ))+∫_4 ^5 (((−1)^4 )/(1+4x^2 ))+    ∫_5 ^6 (((−1)^5 )/(1+5x^2 ))  =(−1)∣tan^(−1) x∣_1 ^2 +(1/2)×(1/(1/( (√2))))∣tan^(−1) ((x/(1/( (√2)))))∣_2 ^3 +   (−1)^ ×(1/3)×(1/(1/( (√3))))∣tan^(−1) ((x/(1/( (√3)))))∣_3 ^4 +  (1/4)×(1/(1/( (√4))))∣tan^(−1) ((x/(1/2)))∣_4 ^5 +(−1)×(1/5)×(1/(1/( (√5))))∣(tan^(−1) (x/((1(/))/( (√5)))))∣_5 ^6   =(tan^(−1) 1−tan^(−1) 2)+(1/( (√2)))(tan^(−1) 3(√2) −tan^(−1) 2(√(2)))  −(1/( (√3)))(tan^(−1) 4(√3) −tan^(−1) 3(√3) )+(1/2)(tn^(−1) 10−tn_ ^(−1) 8  −(1/( (√5)))(tan^(−1) 6(√( 5))  −tan^(−1) 5(√5) )  =tan^(−1) (((−1)/3))+(1/( (√2)))tan^(−1) ((((√2) )/(13)))−(1/( (√3) ))tan^(−1) (((3(√3) )/(37)))  +(1/2)tan^(−1) ((2/(81)))−(1/( (√5) ))tan^(−1) ((((√5) )/(151)))
12(1)11+1×x2+23(1)21+2x2+34(1)31+3x2+45(1)41+4x2+56(1)51+5x2=(1)tan1x12+12×112tan1(x12)23+(1)×13×113tan1(x13)34+14×114tan1(x12)45+(1)×15×115(tan1x15)56=(tan11tan12)+12(tan132tan122)13(tan143tan133)+12(tn110tn1815(tan165tan155)=tan1(13)+12tan1(213)13tan1(3337)+12tan1(281)15tan1(5151)

Leave a Reply

Your email address will not be published. Required fields are marked *