Menu Close

calculate-1-arctan-3-x-2x-2-1-dx-




Question Number 147205 by mathmax by abdo last updated on 18/Jul/21
calculate ∫_1 ^∞  ((arctan((3/x)))/(2x^2  +1))dx
calculate1arctan(3x)2x2+1dx
Answered by mathmax by abdo last updated on 20/Jul/21
Ψ=∫_1 ^∞  ((arctan((3/x)))/(2x^2  +1))dx ⇒Ψ=∫_1 ^∞  (((π/2)−arcan((x/3)))/(2x^2  +1))dx  =(π/2)∫_1 ^∞  (dx/(2x^2  +1))−∫_1 ^∞  ((arctan((x/3)))/(2x^2  +1))dx =(π/2)I−J  I=(1/2)∫_1 ^∞  (dx/(x^2  +(1/2))) =_(x=(1/( (√2)))y)   (1/2)∫_(√2) ^∞  (dy/( (√2)×(1/2)(1+y^2 )))  =(1/( (√2)))[arctany]_(√2) ^∞  =(1/( (√2)))((π/2) −arctan((√2)))  we consider f(a)=∫_1 ^∞  ((arctan(ax))/(2x^2  +1))dx     (o<a<1)  f^′ (a)=∫_1 ^∞  (x/((1+a^2 x^2 )(2x^2  +1)))dx  =_(ax=y)     ∫_a ^∞  (dy/(a(1+y^2 )(2(y^2 /a^2 ) +1)))=∫_a ^∞   ((a^2 dy)/(a(y^2 +1)(2y^2  +a^2 )))  =a∫_a ^∞  (dy/((y^2  +1)(2y^2  +a^2 )))=2a∫_a ^∞  (dy/((2y^2 +2)(2y^2  +a^2 )))  =((2a)/(a^2 −2)) ∫_a ^∞ ((1/(2y^2 +2))−(1/(2y^2 +a^2 )))dy  =(a/(a^2 −2))∫_a ^∞  (dy/(y^2  +1))−(a/(a^2 −2))∫_a ^∞  (dy/(y^2  +(a^2 /2)))(→y=(a/( (√2)))z)  =(a/(a^2 −2))((π/2)−arctana)−(a/(a^2 −2)).(a/( (√2)))∫_(√2) ^∞  (dz/((a^2 /2)(1+z^2 )))  =(a/(a^2 −2))((π/2)−arctana)−((√2)/(a^2 −2))((π/2)−arctan((√2))) ⇒  f(a)=∫ {(a/(a^2 −2))((π/2)−arctana)−((√2)/(a^2 −2))((π/2)−arctan(√2))}da  ....be continued...
Ψ=1arctan(3x)2x2+1dxΨ=1π2arcan(x3)2x2+1dx=π21dx2x2+11arctan(x3)2x2+1dx=π2IJI=121dxx2+12=x=12y122dy2×12(1+y2)=12[arctany]2=12(π2arctan(2))weconsiderf(a)=1arctan(ax)2x2+1dx(o<a<1)f(a)=1x(1+a2x2)(2x2+1)dx=ax=yadya(1+y2)(2y2a2+1)=aa2dya(y2+1)(2y2+a2)=aady(y2+1)(2y2+a2)=2aady(2y2+2)(2y2+a2)=2aa22a(12y2+212y2+a2)dy=aa22adyy2+1aa22adyy2+a22(y=a2z)=aa22(π2arctana)aa22.a22dza22(1+z2)=aa22(π2arctana)2a22(π2arctan(2))f(a)={aa22(π2arctana)2a22(π2arctan2)}da.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *