Menu Close

calculate-1-arctan-3-x-x-2-dx-




Question Number 84570 by msup trace by abdo last updated on 14/Mar/20
calculate ∫_1 ^(+∞)  ((arctan((3/x)))/x^2 )dx
$${calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\frac{{arctan}\left(\frac{\mathrm{3}}{{x}}\right)}{{x}^{\mathrm{2}} }{dx} \\ $$
Commented by mathmax by abdo last updated on 15/Mar/20
let I =∫_1 ^(+∞)  ((arctan((3/x)))/x^2 )dx changement (3/x) =t give (x/3) =(1/t) ⇒  x =(3/t) ⇒ I =∫_3 ^0  ((arctan(t))/(((3/t))^2 ))(−(3/t^2 ))dt  =(1/3)∫_0 ^3   arctant dt =_(by parts)  =(1/3){  [tarctant]_0 ^3  −∫_0 ^3  t(dt/(1+t^2 ))}  3I =3arctan(3) −(1/2)[ln(1+t^2 )]_0 ^3   =3arctan(3)−(1/2)ln(10) ⇒I =arctan(3)−(1/6)ln(10)
$${let}\:{I}\:=\int_{\mathrm{1}} ^{+\infty} \:\frac{{arctan}\left(\frac{\mathrm{3}}{{x}}\right)}{{x}^{\mathrm{2}} }{dx}\:{changement}\:\frac{\mathrm{3}}{{x}}\:={t}\:{give}\:\frac{{x}}{\mathrm{3}}\:=\frac{\mathrm{1}}{{t}}\:\Rightarrow \\ $$$${x}\:=\frac{\mathrm{3}}{{t}}\:\Rightarrow\:{I}\:=\int_{\mathrm{3}} ^{\mathrm{0}} \:\frac{{arctan}\left({t}\right)}{\left(\frac{\mathrm{3}}{{t}}\right)^{\mathrm{2}} }\left(−\frac{\mathrm{3}}{{t}^{\mathrm{2}} }\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{3}} \:\:{arctant}\:{dt}\:=_{{by}\:{parts}} \:=\frac{\mathrm{1}}{\mathrm{3}}\left\{\:\:\left[{tarctant}\right]_{\mathrm{0}} ^{\mathrm{3}} \:−\int_{\mathrm{0}} ^{\mathrm{3}} \:{t}\frac{{dt}}{\mathrm{1}+{t}^{\mathrm{2}} }\right\} \\ $$$$\mathrm{3}{I}\:=\mathrm{3}{arctan}\left(\mathrm{3}\right)\:−\frac{\mathrm{1}}{\mathrm{2}}\left[{ln}\left(\mathrm{1}+{t}^{\mathrm{2}} \right)\right]_{\mathrm{0}} ^{\mathrm{3}} \\ $$$$=\mathrm{3}{arctan}\left(\mathrm{3}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{10}\right)\:\Rightarrow{I}\:={arctan}\left(\mathrm{3}\right)−\frac{\mathrm{1}}{\mathrm{6}}{ln}\left(\mathrm{10}\right) \\ $$
Answered by M±th+et£s last updated on 14/Mar/20
y=(3/x) dy=((−3)/x^2 )  I=∫_3 ^0 tan^(−1) (y) (dy/(−3)) =(1/3)∫_0 ^3 tan^(−1) y dy  =(1/3)[y tan^(−1) y − (1/2)ln(y^2 +1)]_(0 ) ^3   (1/3)(tan^(−1) (x)−(1/2)ln(10))
$${y}=\frac{\mathrm{3}}{{x}}\:{dy}=\frac{−\mathrm{3}}{{x}^{\mathrm{2}} } \\ $$$${I}=\int_{\mathrm{3}} ^{\mathrm{0}} {tan}^{−\mathrm{1}} \left({y}\right)\:\frac{{dy}}{−\mathrm{3}}\:=\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\mathrm{3}} {tan}^{−\mathrm{1}} {y}\:{dy} \\ $$$$=\frac{\mathrm{1}}{\mathrm{3}}\left[{y}\:{tan}^{−\mathrm{1}} {y}\:−\:\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({y}^{\mathrm{2}} +\mathrm{1}\right)\right]_{\mathrm{0}\:} ^{\mathrm{3}} \\ $$$$\frac{\mathrm{1}}{\mathrm{3}}\left({tan}^{−\mathrm{1}} \left({x}\right)−\frac{\mathrm{1}}{\mathrm{2}}{ln}\left(\mathrm{10}\right)\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *