Menu Close

calculate-1-dt-t-1-t-2-




Question Number 36182 by prof Abdo imad last updated on 30/May/18
calculate  ∫_1 ^(+∞)    (dt/(t(√(1+t^2 ))))
calculate1+dtt1+t2
Commented by maxmathsup by imad last updated on 15/Aug/18
let I  = ∫_1 ^(+∞)    (dt/(t(√(1+t^2 )))) dt  changement t =sh(x) give  I = ∫_(argsh(1)) ^(+∞)    (1/(sh(x)ch(x))) ch(x)dx = ∫_(ln(1+(√2))) ^(+∞)     (dx/(sh(x)))  = ∫_(ln(1+(√2))) ^(+∞)    ((2dx)/(e^x  −e^(−x) ))  = ∫_(ln(1+(√2))) ^(+∞)   ((2 e^x )/(e^(2x) −1))dx =_(e^x  =u)   ∫_(1+(√2)) ^(+∞)    ((2u)/(u^2 −1)) (du/u)  = ∫_(1+(√2)) ^(+∞)    ((2du)/(u^2 −1)) = ∫_(1+(√2)) ^(+∞)   (  (1/(u−1)) −(1/(u+1)))du  =[ln∣((u−1)/(u+1))∣]_(1+(√2)) ^(+∞)   =−ln∣ ((√2)/(2+(√2))) ∣ =−ln(((√2)/( (√(2(1+(√2)))))))=ln(1+(√2)) ⇒  I =ln(1+(√2)) .
letI=1+dtt1+t2dtchangementt=sh(x)giveI=argsh(1)+1sh(x)ch(x)ch(x)dx=ln(1+2)+dxsh(x)=ln(1+2)+2dxexex=ln(1+2)+2exe2x1dx=ex=u1+2+2uu21duu=1+2+2duu21=1+2+(1u11u+1)du=[lnu1u+1]1+2+=ln22+2=ln(22(1+2))=ln(1+2)I=ln(1+2).
Answered by sma3l2996 last updated on 31/May/18
L=∫_1 ^(+∞) (dt/(t(√(1+t^2 ))))  let  t=sinhx⇒dt=coshxdx  L=∫_(ln((√2)+1)) ^(+∞) ((coshx)/(sinhx(√(1+sinh^2 x))))dx  =∫_(ln((√2)+1)) ^(+∞) (dx/(sinh(x)))=2∫_(ln((√2)+1)) ^(+∞) (e^x /(e^(2x) −1))dx  u=e^x ⇒du=e^x dx  L=2∫_((√2)+1) ^(+∞) (du/(u^2 −1))=2∫_((√2)+1) ^(+∞) (du/((u+1)(u−1)))  =∫_((√2)+1) ^(+∞) ((1/(u−1))−(1/(u+1)))du  =[ln∣((u−1)/(u+1))∣]_((√2)+1) ^(+∞) =ln∣(((√2)+2)/( (√2)))∣=  L=ln((√2)+1)
L=1+dtt1+t2lett=sinhxdt=coshxdxL=ln(2+1)+coshxsinhx1+sinh2xdx=ln(2+1)+dxsinh(x)=2ln(2+1)+exe2x1dxu=exdu=exdxL=22+1+duu21=22+1+du(u+1)(u1)=2+1+(1u11u+1)du=[lnu1u+1]2+1+=ln2+22∣=L=ln(2+1)
Answered by ajfour last updated on 31/May/18
let   t=tan θ  ; then  I=∫_(π/4) ^(  π/2)  ((sec^2 θdθ)/((tan θ)sec θ))  I=∫_(π/4) ^(  π/2)  cosec θdθ     =ln ∣((cosec (π/2)−cot (π/2))/(cosec (π/4)−cot (π/4)))∣     =ln ((1/( (√2)−1))) = ln (1+(√2)) .
lett=tanθ;thenI=π/4π/2sec2θdθ(tanθ)secθI=π/4π/2cosecθdθ=lncosec(π/2)cot(π/2)cosec(π/4)cot(π/4)=ln(121)=ln(1+2).

Leave a Reply

Your email address will not be published. Required fields are marked *