Question Number 116245 by mathmax by abdo last updated on 02/Oct/20

Answered by MJS_new last updated on 02/Oct/20
![∫(dx/((2x^2 −1)^5 ))= [Ostrogradski] =((x(840x^6 −1540x^4 +1022x^2 −279))/(384(2x^2 −1)^4 ))+((35)/(128))∫(dx/(2x^2 −1))= =((x(840x^6 −1540x^4 +1022x^2 −279))/(384(2x^2 −1)^4 ))+((35(√2))/(512))ln (((√2)x−1)/( (√2)x+1)) +C ⇒ ∫_1 ^∞ (dx/((2x^2 −1)^5 ))=−((43)/(384))+((35(√2))/(256))ln (1+(√2))](https://www.tinkutara.com/question/Q116255.png)
Commented by Bird last updated on 02/Oct/20

Answered by 1549442205PVT last updated on 03/Oct/20
![(2/(2x^2 −1))=(1/( (√2)x−1))−(1/( (√2)x+1)).Hence, Put (1/( (√2)x−1))=a,(1/( (√2)x+1))=b⇒2ab=a−b (1/((2x^2 −1)^5 ))=(1/(32))×((2/(2x^2 −1)))^5 =(1/(32))(a−b)^5 We have (a−b)^5 =a^5 −b^5 −5ab(a^3 −b^3 )+10(ab)^2 (a−b) a^5 −b^5 −(5/2)(a−b)(a^3 −b^3 )+((10)/4)(a−b)^3 =a^5 −b^5 −(5/2)(a^4 +b^4 )+(5/2)ab(a^2 +b^2 )+(5/2)[a^3 −b^3 −3ab(a−b)] =a^5 −b^5 −(5/2)(a^4 +b^4 )+(5/4)(a−b)(a^2 +b^2 )+(5/2)[a^3 −b^3 −3ab(a−b)]] =a^5 −b^5 −(5/2)(a^4 +b^4 )+(5/4)(a^3 −b^3 )−(5/4)ab(a−b)+(5/2)[a^3 −b^3 −3ab(a−b)]] =a^5 −b^5 −(5/2)(a^4 +b^4 )+((15)/4)(a^3 −b^3 )−((35)/8)(a−b)^2 =a^5 −b^5 −(5/2)(a^4 +b^4 )+((15)/4)(a^3 −b^3 )−((35)/8)(a^2 +b^2 )+((35)/8)(a−b) I=∫_1 ^∞ [(1/(32((√2)x−1)^5 ))−(1/(32((√2)x+1)^5 ))−(5/(64((√2)x−1)^4 )) −(5/(64((√2)x+1)^4 ))+((15)/(128((√2)x−1)^3 ))−((15)/(128((√2)x+1)^3 )) −((35)/(256((√2)x−1)^2 ))−((35)/(256((√2)x+1)^2 ))+((35)/(256))(a−b)]dx Put (√2) x−1=u,(√2)x+1=v⇒(√2)dx=du=dv.Hence, I=−(1/(128(√2)((√2)x−1)^4 ))+(1/(128(√2)((√2)x+1)^4 )) +(5/(192(√2)((√2)x−1)^3 ))+(5/(192(√2)((√2)x+1)^3 )) −((15)/( 256(√2)((√2)x−1)^2 ))+((15)/( 256(√2)((√2)x+1)^2 )) +((35)/( 256(√2)((√2)x−1)))+((35)/( 256(√2)((√2)x+1)))]_1 ^∞ +((35)/(256(√2)))ln∣(((√2)x−1)/( (√2)x+1))∣ =[((−(16(√2)x^3 +8(√2)x))/(128(√2)(2x^2 −1)^4 ))+((5(4(√2)x^3 +6(√2)x))/(192(√2)(2x^2 −1)^3 )) −((15×(4(√2)x))/( 256(√2)(2x^2 −1)^2 ))+((35×2(√2)x)/( 256(√2)(2x^2 −1)))+((35)/(256(√2)))ln∣(((√2)x−1)/( (√2)x+1))∣]_1 ^∞ =−(((−24(√2))/(128(√2)))+((50(√2))/( 192(√2)))−((60(√2))/( 256(√2)))+((70(√2))/( 256(√2)))+((35)/(256))ln(((√2)−1)/( (√2)+1))) =−((43)/(384))−((35(√2))/(256))ln((√2)−1)≈0.058434](https://www.tinkutara.com/question/Q116269.png)
Commented by Bird last updated on 02/Oct/20

Commented by 1549442205PVT last updated on 03/Oct/20

Answered by Bird last updated on 03/Oct/20
![I =∫_1 ^∞ (dx/((2x^2 −1)^5 )) ⇒ I =∫_1 ^∞ (dx/((x(√2)−1)^5 (x(√2)+1)^5 )) =∫_1 ^∞ (dx/((((x(√2)−1)/(x(√2)+1)))^5 (x(√2)+1)^(10) )) we do the changement ((x(√2)−1)/(x(√2)+1))=t ⇒x(√2)−1 =tx(√2)+t ⇒ ((√2)−t(√2))x =t+1 ⇒x =((t+1)/( (√2)(1−t))) ⇒(dx/dt) =(1/( (√2))).((1−t−(t+1)(−1))/((1−t)^2 )) =(1/( (√2))).(2/((t−1)^2 )) also x(√2)+1 =((t+1)/(1−t))+1 =((t+1+1−t)/(1−t)) =(2/(1−t)) ⇒ ⇒I =∫_(((√2)−1)/( (√2)+1)) ^1 (1/(t^5 ((2/(1−t)))^(10) ))×((√2)/((t−1)^2 ))dt =((√2)/2^(10) )∫_(3−2(√2)) ^1 (((t−1)^8 )/t^5 )dt =((√2)/2^(10) ) ∫_(3−2(√2)) ^1 ((Σ_(k=0) ^8 C_8 ^k t^k (−1)^(8−k) )/t^5 )dt =((√2)/2^(10) ) Σ_(k=0) ^8 (−1)^k C_8 ^k ∫_(3−2(√2)) ^1 t^(k−5) dt =((√2)/2^(10) )Σ_(k=0 and k≠4) ^8 (−1)^k C_8 ^k [(1/(k−4))t^(k−4) ]_(3−2(√2)) ^1 +((√2)/2^(10) ) C_8 ^4 [lnt]_(3−2(√2)) ^1 I=((√2)/2^(10) ) Σ_(k=0and k≠4) ^8 (((−1)^(k ) C_8 ^k )/(k−4)){1−(3−2(√2))^(k−4) } −((√2)/2^(10) ) C_8 ^k ln(3−2(√2))](https://www.tinkutara.com/question/Q116328.png)