Menu Close

calculate-1-dx-2x-2-1-5-




Question Number 116245 by mathmax by abdo last updated on 02/Oct/20
calculate  ∫_1 ^∞  (dx/((2x^2 −1)^5 ))
calculate1dx(2x21)5
Answered by MJS_new last updated on 02/Oct/20
∫(dx/((2x^2 −1)^5 ))=       [Ostrogradski]  =((x(840x^6 −1540x^4 +1022x^2 −279))/(384(2x^2 −1)^4 ))+((35)/(128))∫(dx/(2x^2 −1))=  =((x(840x^6 −1540x^4 +1022x^2 −279))/(384(2x^2 −1)^4 ))+((35(√2))/(512))ln (((√2)x−1)/( (√2)x+1)) +C  ⇒  ∫_1 ^∞ (dx/((2x^2 −1)^5 ))=−((43)/(384))+((35(√2))/(256))ln (1+(√2))
dx(2x21)5=[Ostrogradski]=x(840x61540x4+1022x2279)384(2x21)4+35128dx2x21==x(840x61540x4+1022x2279)384(2x21)4+352512ln2x12x+1+C1dx(2x21)5=43384+352256ln(1+2)
Commented by Bird last updated on 02/Oct/20
thank you sir
thankyousir
Answered by 1549442205PVT last updated on 03/Oct/20
(2/(2x^2 −1))=(1/( (√2)x−1))−(1/( (√2)x+1)).Hence,  Put (1/( (√2)x−1))=a,(1/( (√2)x+1))=b⇒2ab=a−b  (1/((2x^2 −1)^5 ))=(1/(32))×((2/(2x^2 −1)))^5 =(1/(32))(a−b)^5   We have (a−b)^5   =a^5 −b^5 −5ab(a^3 −b^3 )+10(ab)^2 (a−b)  a^5 −b^5 −(5/2)(a−b)(a^3 −b^3 )+((10)/4)(a−b)^3   =a^5 −b^5 −(5/2)(a^4 +b^4 )+(5/2)ab(a^2 +b^2 )+(5/2)[a^3 −b^3 −3ab(a−b)]   =a^5 −b^5 −(5/2)(a^4 +b^4 )+(5/4)(a−b)(a^2 +b^2 )+(5/2)[a^3 −b^3 −3ab(a−b)]]   =a^5 −b^5 −(5/2)(a^4 +b^4 )+(5/4)(a^3 −b^3 )−(5/4)ab(a−b)+(5/2)[a^3 −b^3 −3ab(a−b)]]   =a^5 −b^5 −(5/2)(a^4 +b^4 )+((15)/4)(a^3 −b^3 )−((35)/8)(a−b)^2   =a^5 −b^5 −(5/2)(a^4 +b^4 )+((15)/4)(a^3 −b^3 )−((35)/8)(a^2 +b^2 )+((35)/8)(a−b)  I=∫_1 ^∞ [(1/(32((√2)x−1)^5 ))−(1/(32((√2)x+1)^5 ))−(5/(64((√2)x−1)^4 ))  −(5/(64((√2)x+1)^4 ))+((15)/(128((√2)x−1)^3 ))−((15)/(128((√2)x+1)^3 ))  −((35)/(256((√2)x−1)^2 ))−((35)/(256((√2)x+1)^2 ))+((35)/(256))(a−b)]dx  Put (√2) x−1=u,(√2)x+1=v⇒(√2)dx=du=dv.Hence,  I=−(1/(128(√2)((√2)x−1)^4 ))+(1/(128(√2)((√2)x+1)^4 ))  +(5/(192(√2)((√2)x−1)^3 ))+(5/(192(√2)((√2)x+1)^3 ))  −((15)/( 256(√2)((√2)x−1)^2 ))+((15)/( 256(√2)((√2)x+1)^2 ))  +((35)/( 256(√2)((√2)x−1)))+((35)/( 256(√2)((√2)x+1)))]_1 ^∞   +((35)/(256(√2)))ln∣(((√2)x−1)/( (√2)x+1))∣  =[((−(16(√2)x^3 +8(√2)x))/(128(√2)(2x^2 −1)^4 ))+((5(4(√2)x^3 +6(√2)x))/(192(√2)(2x^2 −1)^3 ))  −((15×(4(√2)x))/( 256(√2)(2x^2 −1)^2 ))+((35×2(√2)x)/( 256(√2)(2x^2 −1)))+((35)/(256(√2)))ln∣(((√2)x−1)/( (√2)x+1))∣]_1 ^∞   =−(((−24(√2))/(128(√2)))+((50(√2))/( 192(√2)))−((60(√2))/( 256(√2)))+((70(√2))/( 256(√2)))+((35)/(256))ln(((√2)−1)/( (√2)+1)))  =−((43)/(384))−((35(√2))/(256))ln((√2)−1)≈0.058434
22x21=12x112x+1.Hence,Put12x1=a,12x+1=b2ab=ab1(2x21)5=132×(22x21)5=132(ab)5Wehave(ab)5=a5b55ab(a3b3)+10(ab)2(ab)a5b552(ab)(a3b3)+104(ab)3=a5b552(a4+b4)+52ab(a2+b2)+52[a3b33ab(ab)]=a5b552(a4+b4)+54(ab)(a2+b2)+52[a3b33ab(ab)]]=a5b552(a4+b4)+54(a3b3)54ab(ab)+52[a3b33ab(ab)]]=a5b552(a4+b4)+154(a3b3)358(ab)2=a5b552(a4+b4)+154(a3b3)358(a2+b2)+358(ab)I=1[132(2x1)5132(2x+1)5564(2x1)4564(2x+1)4+15128(2x1)315128(2x+1)335256(2x1)235256(2x+1)2+35256(ab)]dxPut2x1=u,2x+1=v2dx=du=dv.Hence,I=11282(2x1)4+11282(2x+1)4+51922(2x1)3+51922(2x+1)3152562(2x1)2+152562(2x+1)2+352562(2x1)+352562(2x+1)]1+352562ln2x12x+1=[(162x3+82x)1282(2x21)4+5(42x3+62x)1922(2x21)315×(42x)2562(2x21)2+35×22x2562(2x21)+352562ln2x12x+1]1=(2421282+50219226022562+7022562+35256ln212+1)=43384352256ln(21)0.058434
Commented by Bird last updated on 02/Oct/20
thank you sir for this hardwork
thankyousirforthishardwork
Commented by 1549442205PVT last updated on 03/Oct/20
Thank Sir.You are welcome.
ThankSir.Youarewelcome.
Answered by Bird last updated on 03/Oct/20
I =∫_1 ^∞  (dx/((2x^2 −1)^5 )) ⇒  I =∫_1 ^∞  (dx/((x(√2)−1)^5 (x(√2)+1)^5 ))  =∫_1 ^∞  (dx/((((x(√2)−1)/(x(√2)+1)))^5 (x(√2)+1)^(10) ))  we do the changement ((x(√2)−1)/(x(√2)+1))=t  ⇒x(√2)−1 =tx(√2)+t ⇒  ((√2)−t(√2))x =t+1 ⇒x =((t+1)/( (√2)(1−t)))  ⇒(dx/dt) =(1/( (√2))).((1−t−(t+1)(−1))/((1−t)^2 ))  =(1/( (√2))).(2/((t−1)^2 )) also x(√2)+1 =((t+1)/(1−t))+1  =((t+1+1−t)/(1−t)) =(2/(1−t)) ⇒  ⇒I =∫_(((√2)−1)/( (√2)+1)) ^1  (1/(t^5 ((2/(1−t)))^(10) ))×((√2)/((t−1)^2 ))dt  =((√2)/2^(10) )∫_(3−2(√2)) ^1    (((t−1)^8 )/t^5 )dt  =((√2)/2^(10) ) ∫_(3−2(√2)) ^1 ((Σ_(k=0) ^8  C_8 ^k  t^k (−1)^(8−k) )/t^5 )dt  =((√2)/2^(10) ) Σ_(k=0) ^8  (−1)^k  C_8 ^k  ∫_(3−2(√2)) ^1 t^(k−5) dt  =((√2)/2^(10) )Σ_(k=0 and k≠4) ^8 (−1)^k  C_8 ^k [(1/(k−4))t^(k−4) ]_(3−2(√2)) ^1   +((√2)/2^(10) ) C_8 ^4  [lnt]_(3−2(√2)) ^1   I=((√2)/2^(10) ) Σ_(k=0and k≠4) ^8  (((−1)^(k ) C_8 ^k )/(k−4)){1−(3−2(√2))^(k−4) }  −((√2)/2^(10) ) C_8 ^k ln(3−2(√2))
I=1dx(2x21)5I=1dx(x21)5(x2+1)5=1dx(x21x2+1)5(x2+1)10wedothechangementx21x2+1=tx21=tx2+t(2t2)x=t+1x=t+12(1t)dxdt=12.1t(t+1)(1)(1t)2=12.2(t1)2alsox2+1=t+11t+1=t+1+1t1t=21tI=212+111t5(21t)10×2(t1)2dt=22103221(t1)8t5dt=22103221k=08C8ktk(1)8kt5dt=2210k=08(1)kC8k3221tk5dt=2210k=0andk48(1)kC8k[1k4tk4]3221+2210C84[lnt]3221I=2210k=0andk48(1)kC8kk4{1(322)k4}2210C8kln(322)

Leave a Reply

Your email address will not be published. Required fields are marked *