Menu Close

calculate-1-dx-4x-2-1-3-




Question Number 115927 by mathmax by abdo last updated on 29/Sep/20
calculate  ∫_1 ^(+∞)      (dx/((4x^2 −1)^3 ))
calculate1+dx(4x21)3
Answered by 1549442205PVT last updated on 29/Sep/20
(2/(4x^2 −1))=(1/(2x−1))−(1/(2x+1)).Put (1/(2x−1))=a,  (1/(2x+1))=b⇒2ab=a−b  (1/((4x^2 −1)^3 ))=(1/8)((2/(4x^2 −1)))^3 =(1/8)(a−b)^3   =(1/8)[a^3 −b^3 −3ab(a−b)]=(1/8)[a^3 −b^3 −(3/2)(a−b)^2 ]  (1/8)[a^3 −b^3 −(3/2)a^2 −(3/2)b^2 +(3/2)(a−b)]  =(1/8)a^3 −(1/8)b^3 −(3/(16))a^2 −(3/(16))b^2 +(3/(16))a−(3/(16))b  I=∫_1 ^(+∞)      (dx/((4x^2 −1)^3 ))  =∫_1 ^∞ ((1/(8(2x−1)^3 ))−(1/(8(2x+1)^3 ))−(3/(16(2x−1)^2 ))−(3/(16(2x+1)^2 ))+(3/(16(2x−1)))−(3/(16(2x+1))))dx  =(1/(16))∫_1 ^∞ ((d(2x−1))/((2x−1)^3 ))−(1/(16))∫_1 ^∞ ((d(2x+1))/((2x+1)^3 ))  −(3/(32))∫_1 ^∞ ((d(2x−1))/((2x−1)^2 ))−(3/(32))∫_1 ^∞ ((d(2x+1))/((2x+1)^2 ))  +(3/(32))∫((d(2x−1))/((2x−1)))−(3/(32))∫_1 ^∞ ((d(2x+1))/((2x+1)))  ={((−1)/(32(2x−1)^2 ))+(1/(32(2x+1)^2 ))+(3/(32(2x−1)))+(3/(32(2x+1)))+(3/(32))ln∣((2x−1)/(2x+1))∣}_1 ^∞   =(1/(32))−(1/(288))−(3/(32))−(1/(32))−(3/(32))ln((1/3))=((−7)/(72))+(3/(32))ln3
24x21=12x112x+1.Put12x1=a,12x+1=b2ab=ab1(4x21)3=18(24x21)3=18(ab)3=18[a3b33ab(ab)]=18[a3b332(ab)2]18[a3b332a232b2+32(ab)]=18a318b3316a2316b2+316a316bI=1+dx(4x21)3=1(18(2x1)318(2x+1)3316(2x1)2316(2x+1)2+316(2x1)316(2x+1))dx=1161d(2x1)(2x1)31161d(2x+1)(2x+1)33321d(2x1)(2x1)23321d(2x+1)(2x+1)2+332d(2x1)(2x1)3321d(2x+1)(2x+1)={132(2x1)2+132(2x+1)2+332(2x1)+332(2x+1)+332ln2x12x+1}1=1321288332132332ln(13)=772+332ln3
Answered by mathmax by abdo last updated on 29/Sep/20
I =∫_1 ^(+∞)  (dx/((4x^2 −1)^3 )) ⇒ I =∫_1 ^∞  (dx/((2x−1)^3 (2x+1)^3 ))  =∫_1 ^∞  (dx/((((2x−1)/(2x+1)))^3 (2x+1)^6 ))  we do the changement ((2x−1)/(2x+1))=t ⇒  2x−1=2tx+t ⇒(2−2t)x =t+1 ⇒ x =((t+1)/(2−2t)) ⇒  (dx/dt) =((2−2t−(−2)(t+1))/((2−2t)^2 )) =(1/(4(1−t)^2 )) and 2x+1 =((2t+2)/(2−2t)) +1  =((2t+2+2−2t)/(2−2t)) =(4/(2−2t)) =(2/(1−t)) ⇒  I =∫_(1/3) ^1  (1/(t^3 ((2/(1−t)))^6 ))×(dt/(4(1−t)^2 )) =(1/4)∫_(1/3) ^1   (((t−1)^6 )/(2^6  .t^3 .(t−1)^2 ))dt  =(1/2^8 ) ∫_(1/3) ^1  (((t−1)^4 )/t^3 )dt  ⇒2^8  .I =∫_(1/3) ^1  ((Σ_(k=0) ^4  C_4 ^k  t^k (−1)^(4−k) )/t^3 )dt  =Σ_(k=0) ^4  (−1)^k  C_4 ^k  ∫_(1/3) ^1  t^(k−3)  dt  =Σ_(k=0and k≠2) ^4 (−1)^k  C_4 ^k [(1/(k−2))t^(k−2) ]_(1/3) ^1   +C_4 ^2 [lnt]_(1/3) ^1  ⇒  I =(1/2^8 )(Σ_(k=0 and k≠2) ^4  (((−1)^k  C_4 ^k )/(k−2))(1−(1/3^(k−2) )) +C_4 ^2 ln(3))
I=1+dx(4x21)3I=1dx(2x1)3(2x+1)3=1dx(2x12x+1)3(2x+1)6wedothechangement2x12x+1=t2x1=2tx+t(22t)x=t+1x=t+122tdxdt=22t(2)(t+1)(22t)2=14(1t)2and2x+1=2t+222t+1=2t+2+22t22t=422t=21tI=1311t3(21t)6×dt4(1t)2=14131(t1)626.t3.(t1)2dt=128131(t1)4t3dt28.I=131k=04C4ktk(1)4kt3dt=k=04(1)kC4k131tk3dt=k=0andk24(1)kC4k[1k2tk2]131+C42[lnt]131I=128(k=0andk24(1)kC4kk2(113k2)+C42ln(3))

Leave a Reply

Your email address will not be published. Required fields are marked *