calculate-1-dx-4x-2-1-3- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 115927 by mathmax by abdo last updated on 29/Sep/20 calculate∫1+∞dx(4x2−1)3 Answered by 1549442205PVT last updated on 29/Sep/20 24x2−1=12x−1−12x+1.Put12x−1=a,12x+1=b⇒2ab=a−b1(4x2−1)3=18(24x2−1)3=18(a−b)3=18[a3−b3−3ab(a−b)]=18[a3−b3−32(a−b)2]18[a3−b3−32a2−32b2+32(a−b)]=18a3−18b3−316a2−316b2+316a−316bI=∫1+∞dx(4x2−1)3=∫1∞(18(2x−1)3−18(2x+1)3−316(2x−1)2−316(2x+1)2+316(2x−1)−316(2x+1))dx=116∫1∞d(2x−1)(2x−1)3−116∫1∞d(2x+1)(2x+1)3−332∫1∞d(2x−1)(2x−1)2−332∫1∞d(2x+1)(2x+1)2+332∫d(2x−1)(2x−1)−332∫1∞d(2x+1)(2x+1)={−132(2x−1)2+132(2x+1)2+332(2x−1)+332(2x+1)+332ln∣2x−12x+1∣}1∞=132−1288−332−132−332ln(13)=−772+332ln3 Answered by mathmax by abdo last updated on 29/Sep/20 I=∫1+∞dx(4x2−1)3⇒I=∫1∞dx(2x−1)3(2x+1)3=∫1∞dx(2x−12x+1)3(2x+1)6wedothechangement2x−12x+1=t⇒2x−1=2tx+t⇒(2−2t)x=t+1⇒x=t+12−2t⇒dxdt=2−2t−(−2)(t+1)(2−2t)2=14(1−t)2and2x+1=2t+22−2t+1=2t+2+2−2t2−2t=42−2t=21−t⇒I=∫1311t3(21−t)6×dt4(1−t)2=14∫131(t−1)626.t3.(t−1)2dt=128∫131(t−1)4t3dt⇒28.I=∫131∑k=04C4ktk(−1)4−kt3dt=∑k=04(−1)kC4k∫131tk−3dt=∑k=0andk≠24(−1)kC4k[1k−2tk−2]131+C42[lnt]131⇒I=128(∑k=0andk≠24(−1)kC4kk−2(1−13k−2)+C42ln(3)) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-the-sequence-u-n-wich-verify-u-n-2-4u-n-1-4u-n-n-Next Next post: let-f-t-t-1-t-study-the-sequence-S-n-k-1-n-f-k-n-2- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.