Menu Close

calculate-1-dx-x-2-1-2-x-2-4-2-




Question Number 105230 by mathmax by abdo last updated on 27/Jul/20
calculate ∫_1 ^(+∞) (dx/((x^2 +1)^2 (x^2  +4)^2 ))
calculate1+dx(x2+1)2(x2+4)2
Answered by 1549442205PVT last updated on 27/Jul/20
F=∫[(1/4)((1/x^2 )−(1/(x^2 +4)))]^2 dx  16F=∫[(1/x^4 )+(1/((x^2 +4)^2 ))−(2/(x^2 (x^2 +4)))]dx  =∫(dx/x^4 )+∫((1/(2(x^2 +4)))−(1/(2x^2 )))dx+∫ (dx/((x^2 +4)^2 ))  =−(1/(3x^3 ))+(1/(2x))+(1/2)×(1/2)tan^(−1) ((x/2))+I_2   =−(1/(3x^3 ))+(1/(2x))+(1/4)tan^(−1) ((x/2))+(1/(2.4)).(x/((x^2 +4)))+(1/4).(1/2).(1/2)tan^(−1) ((x/2))  =−(1/(3x^3 ))+(1/(2x))+(x/(8(x^2 +4)))+(5/(16))tan^(−1) ((x/2))  F=(1/(16)){−(1/(3x^3 ))+(1/(2x))+(x/(8(x^2 +4)))+(5/(16))tan^(−1) ((x/2))}  I= ∫_1 ^(+∞) (dx/((x^2 +1)^2 (x^2  +4)^2 ))=F(+∞)−F(1)  =(1/(16)){(5/(16))×(𝛑/2)−[((23)/(120))+(5/(16))tan^(−1) ((1/2))]}
F=[14(1x21x2+4)]2dx16F=[1x4+1(x2+4)22x2(x2+4)]dx=dxx4+(12(x2+4)12x2)dx+dx(x2+4)2=13x3+12x+12×12tan1(x2)+I2=13x3+12x+14tan1(x2)+12.4.x(x2+4)+14.12.12tan1(x2)=13x3+12x+x8(x2+4)+516tan1(x2)F=116{13x3+12x+x8(x2+4)+516tan1(x2)}I=1+dx(x2+1)2(x2+4)2=F(+)F(1)=116{516×π2[23120+516tan1(12)]}
Commented by abdomsup last updated on 28/Jul/20
thank you sir
thankyousir
Commented by 1549442205PVT last updated on 28/Jul/20
Thank,you are welcome.
Thank,youarewelcome.
Answered by mathmax by abdo last updated on 29/Jul/20
I =∫_1 ^(+∞)  (dx/((x^2 +1)^2 (x^2  +4)^2 ))  we have F(x)= (1/((x^2 +1)^2 (x^2  +4)^2 )) =(1/9)((1/(x^2  +1))−(1/(x^2  +4)))^2   =(1/9){  (1/((x^2  +1)^2 )) −(2/((x^2  +1)(x^2  +4))) +(1/((x^2  +4)^2 ))} ⇒  9F(x) =(1/((x^2  +1)^2 )) −(2/3)((1/(x^2  +1))−(1/(x^2  +4)))+(1/((x^2 +4)^2 ))  =(1/((x^2 +1)^2 ))−(2/(3(x^2  +1))) +(2/(3(x^2  +4))) +(1/((x^2  +4)^2 )) ⇒  9 ∫_1 ^∞  F(x) =∫_1 ^∞  (dx/((1+x^2 )^2 ))−(2/3)∫_1 ^∞  (dx/(1+x^2 )) +(2/3)∫_1 ^∞  (dx/(x^2  +4)) +∫_1 ^∞  (dx/((x^2  +4)^2 ))  we have ∫_1 ^∞  (dx/((1+x^2 )^2 )) =_(x=tant)    ∫_(π/4) ^(π/2)   (((1+tan^2 t))/((1+tan^2 t)^2 ))dt  =∫_(π/4) ^(π/2)  cos^2 t dt =(1/2)∫_(π/4) ^(π/2) (1+cos(2t))dt =(π/8) +(1/4)[sin(2t)]_(π/4) ^(π/2)   =(π/8) −(1/4)  and ∫_1 ^∞  (dx/(1+x^2 )) =[arctanx]_1 ^∞  =(π/2)−(π/4) =(π/4)  ∫_1 ^∞  (dx/(x^2  +4)) =_(x=2t)    ∫_(1/2) ^∞  ((2dt)/(4(1+t^2 ))) =(1/2)((π/2)−arctan((1/2)))  =(π/4) −(1/2)((π/2)−arctan2) =((arctan2)/2)  ∫_1 ^∞  (dx/((x^2  +4)^2 )) =_(x=2t)    ∫_(1/2) ^∞  ((2dt)/(16(t^2  +1)^2 )) =(1/8) ∫_(1/2) ^∞  (dt/((1+t^2 )^2 ))  =_(t=tanu)      (1/8) ∫_(arctan((1/2))) ^(π/2)  ((1+tan^2 u)/((1+tan^2 u)^2 ))du  =(1/8)∫_(arctan((1/2))) ^(π/2)  ((1+cos(2u))/2) du =(1/(16))∫_(arctan((1/2))) ^(π/2) (1+cos(2u)du  =(1/(16))((π/2)−arctan((1/2)))+(1/(32))[sin(2u)]_(...) ^(...)   =((arctan2)/(16)) +(1/(32))(−sin(2arctan((1/2)))  so the value of I is known
I=1+dx(x2+1)2(x2+4)2wehaveF(x)=1(x2+1)2(x2+4)2=19(1x2+11x2+4)2=19{1(x2+1)22(x2+1)(x2+4)+1(x2+4)2}9F(x)=1(x2+1)223(1x2+11x2+4)+1(x2+4)2=1(x2+1)223(x2+1)+23(x2+4)+1(x2+4)291F(x)=1dx(1+x2)2231dx1+x2+231dxx2+4+1dx(x2+4)2wehave1dx(1+x2)2=x=tantπ4π2(1+tan2t)(1+tan2t)2dt=π4π2cos2tdt=12π4π2(1+cos(2t))dt=π8+14[sin(2t)]π4π2=π814and1dx1+x2=[arctanx]1=π2π4=π41dxx2+4=x=2t122dt4(1+t2)=12(π2arctan(12))=π412(π2arctan2)=arctan221dx(x2+4)2=x=2t122dt16(t2+1)2=1812dt(1+t2)2=t=tanu18arctan(12)π21+tan2u(1+tan2u)2du=18arctan(12)π21+cos(2u)2du=116arctan(12)π2(1+cos(2u)du=116(π2arctan(12))+132[sin(2u)]=arctan216+132(sin(2arctan(12))sothevalueofIisknown

Leave a Reply

Your email address will not be published. Required fields are marked *