Menu Close

calculate-1-dx-x-2-1-x-2-3-




Question Number 98179 by abdomathmax last updated on 12/Jun/20
calculate ∫_1 ^(+∞)    (dx/(x^2 (1−x^2 )^3 ))
$$\mathrm{calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$
Answered by MJS last updated on 12/Jun/20
I love Ostrogradski′s Method...  it leads to  −((15x^4 −25x^2 +8)/(8x(x^2 −1)^2 ))−((15)/8)∫(dx/(x^2 −1))=  =−((15x^4 −25x^2 +8)/(8x(x^2 −1)^2 ))+((15)/(16))ln ∣((x+1)/(x−1))∣ +C  ∫_2 ^(+∞) (dx/(x^2 (1−x^2 )^3 ))=((37)/(36))−((15)/(16))ln 3
$$\mathrm{I}\:\mathrm{love}\:\mathrm{Ostrogradski}'\mathrm{s}\:\mathrm{Method}… \\ $$$$\mathrm{it}\:\mathrm{leads}\:\mathrm{to} \\ $$$$−\frac{\mathrm{15}{x}^{\mathrm{4}} −\mathrm{25}{x}^{\mathrm{2}} +\mathrm{8}}{\mathrm{8}{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }−\frac{\mathrm{15}}{\mathrm{8}}\int\frac{{dx}}{{x}^{\mathrm{2}} −\mathrm{1}}= \\ $$$$=−\frac{\mathrm{15}{x}^{\mathrm{4}} −\mathrm{25}{x}^{\mathrm{2}} +\mathrm{8}}{\mathrm{8}{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }+\frac{\mathrm{15}}{\mathrm{16}}\mathrm{ln}\:\mid\frac{{x}+\mathrm{1}}{{x}−\mathrm{1}}\mid\:+{C} \\ $$$$\underset{\mathrm{2}} {\overset{+\infty} {\int}}\frac{{dx}}{{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)^{\mathrm{3}} }=\frac{\mathrm{37}}{\mathrm{36}}−\frac{\mathrm{15}}{\mathrm{16}}\mathrm{ln}\:\mathrm{3} \\ $$
Commented by mathmax by abdo last updated on 12/Jun/20
thanks sir mjs
$$\mathrm{thanks}\:\mathrm{sir}\:\mathrm{mjs} \\ $$
Answered by mathmax by abdo last updated on 12/Jun/20
sorry the Q is calculate  ∫_2 ^(+∞)  (dx/(x^2 (1−x^2 )^3 ))
$$\mathrm{sorry}\:\mathrm{the}\:\mathrm{Q}\:\mathrm{is}\:\mathrm{calculate}\:\:\int_{\mathrm{2}} ^{+\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)^{\mathrm{3}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *