Menu Close

calculate-1-dx-x-2-4-x-2-




Question Number 36754 by prof Abdo imad last updated on 05/Jun/18
calculate   ∫_1 ^(+∞)     (dx/(x^2 (√(4+x^2 )))) .
calculate1+dxx24+x2.
Commented by abdo mathsup 649 cc last updated on 05/Jun/18
changement  x=2 sh(t) give  I = ∫_(argsh((1/2))) ^(+∞)     (1/(4 sh^2 t.2cht)) ((2ch(t)dt)/)  =(1/4) ∫_(argsh((1/2))) ^(+∞)    (dt/((ch(2t)−1)/2))  = (1/2) ∫_(argsh((1/2))) ^(+∞)    (dt/( ((e^(2t)  +e^(−2t) )/2)−1))  = ∫_(argsh((1/2))) ^(+∞)     (dt/(e^(2t)  +e^(−2t)  −2))=∫_(ln((1/2) +((√5)/2))) ^(+∞)    (dt/(e^(2t)  +e^(−2t)  −2))  =_(e^(2t)  =u)     ∫_(((1/2)+((√5)/2))^2 ) ^(+∞)          (1/(u +(1/u) −2))(du/(2u))  = (1/2)∫_((6+2(√5))/4) ^(+∞)      (du/(u^2  +1)) =(1/2)[ arctanu]_((6+2(√5))/4) ^(+∞)   =(π/4) −(1/2) arctan( ((6+2(√5))/4)) .
changementx=2sh(t)giveI=argsh(12)+14sh2t.2cht2ch(t)dt=14argsh(12)+dtch(2t)12=12argsh(12)+dte2t+e2t21=argsh(12)+dte2t+e2t2=ln(12+52)+dte2t+e2t2=e2t=u(12+52)2+1u+1u2du2u=126+254+duu2+1=12[arctanu]6+254+=π412arctan(6+254).
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Jun/18
let x=(1/(t  ))  so dx=((−1)/t^2 )dt  ∫_1 ^0 ((−dt)/(t^2 ×(1/t^2 )×(√(4_ +(1/t^2 )))))  ∫_1 ^0 ((−tdt)/(2(√(t^2 +(1/4)))))  =((−1)/2)∫_1 ^0 ((tdt)/( (√(t^2 +(1/4)))))  k^2 =t^2 +(1/4)   2kdk=2tdt  =((−1)/2)×∫_(((√5) )/2) ^(1/2) ((kdk)/k)  =((−1)/2)×((1/2)−(((√5) )/2))  =(((√5) −1)/4)
letx=1tsodx=1t2dt10dtt2×1t2×4+1t210tdt2t2+14=1210tdtt2+14k2=t2+142kdk=2tdt=12×5212kdkk=12×(1252)=514

Leave a Reply

Your email address will not be published. Required fields are marked *