calculate-1-dx-x-2-x-1-3-x-2-4- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 94906 by mathmax by abdo last updated on 21/May/20 calculate∫1+∞dxx2(x+1)3(x+2)4 Answered by MJS last updated on 22/May/20 ∫dxx2(x+1)3(x+2)4=[Ostrogradski]=105x5+675x4+1565x3+1525x2+506x−1224x(x+1)2(x+2)3++58∫7x−1x(x+1)(x+2)dx58∫7x−1x(x+1)(x+2)dx==−516∫dxx+5∫dxx+1−7516∫dxx+2==−516lnx+5ln(x+1)−7516ln(x+2)+C∫∞1dxx2(x+1)3(x+2)4=−1091648+7516ln3−5ln2 Commented by mathmax by abdo last updated on 22/May/20 thankyousir. Answered by mathmax by abdo last updated on 22/May/20 I=∫1+∞dxx2(x+1)3(x+2)4⇒I=∫1+∞dx(xx+1)2(x+1)5(x+2)4wedothechangementxx+1=t⇒x=tx+t⇒(1−t)x=t⇒x=t1−t⇒dxdt=1−t−t(−1)(1−t)2=1(t−1)2andx+1=t1−t+1=t+1−t1−t=11−tandx+2=t1−t+2=t+2−2t1−t=2−t1−t⇒I=∫121dt(t−1)2(11−t)5(t−2t−1)4=−∫121(t−1)9(t−1)2(t−2)4dt=−∫121(t−1)7(t−2)4dt=t−2=z−∫−32−1(z+1)7z4dz=−∫−32−1∑k=07C7kzkz4dz=−∫−32−1∑k=07C7kzk−4dz=−∑k=07C7k∫−32−1zk−4dz=−∑k=0andk≠37C7k[1k−3zk−3]−32−1−C73[ln∣z∣]−32−1=−∑k=0(k≠3)7C7kk−3((−1)k−3−(−32)k−3)+C73ln(32) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-calculate-dx-2-x-1-2-2-find-the-value-of-2-dx-2-x-1-2-Next Next post: Find-lim-x-2-1-x-1-pi-x-x-3-8- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.