Menu Close

calculate-1-dx-x-2-x-1-3-x-2-4-




Question Number 94906 by mathmax by abdo last updated on 21/May/20
calculate ∫_1 ^(+∞)    (dx/(x^2 (x+1)^3 (x+2)^4 ))
calculate1+dxx2(x+1)3(x+2)4
Answered by MJS last updated on 22/May/20
∫(dx/(x^2 (x+1)^3 (x+2)^4 ))=       [Ostrogradski]  =((105x^5 +675x^4 +1565x^3 +1525x^2 +506x−12)/(24x(x+1)^2 (x+2)^3 ))+       +(5/8)∫((7x−1)/(x(x+1)(x+2)))dx    (5/8)∫((7x−1)/(x(x+1)(x+2)))dx=  =−(5/(16))∫(dx/x)+5∫(dx/(x+1))−((75)/(16))∫(dx/(x+2))=  =−(5/(16))ln x +5ln (x+1) −((75)/(16))ln (x+2) +C    ∫_1 ^∞ (dx/(x^2 (x+1)^3 (x+2)^4 ))=−((1091)/(648))+((75)/(16))ln 3 −5ln 2
dxx2(x+1)3(x+2)4=[Ostrogradski]=105x5+675x4+1565x3+1525x2+506x1224x(x+1)2(x+2)3++587x1x(x+1)(x+2)dx587x1x(x+1)(x+2)dx==516dxx+5dxx+17516dxx+2==516lnx+5ln(x+1)7516ln(x+2)+C1dxx2(x+1)3(x+2)4=1091648+7516ln35ln2
Commented by mathmax by abdo last updated on 22/May/20
thank you sir.
thankyousir.
Answered by mathmax by abdo last updated on 22/May/20
I =∫_1 ^(+∞)  (dx/(x^2 (x+1)^3 (x+2)^4 )) ⇒I =∫_1 ^(+∞)  (dx/(((x/(x+1)))^2  (x+1)^5 (x+2)^4 ))  we do the changement (x/(x+1)) =t ⇒x =tx+t ⇒(1−t)x=t ⇒  x =(t/(1−t)) ⇒(dx/dt) =((1−t−t(−1))/((1−t)^2 )) =(1/((t−1)^2 )) and x+1 =(t/(1−t)) +1  =((t+1−t)/(1−t)) =(1/(1−t))  and x+2 =(t/(1−t)) +2 =((t+2−2t)/(1−t)) =((2−t)/(1−t)) ⇒  I =∫_(1/2) ^1  (dt/((t−1)^2 ((1/(1−t)))^5 (((t−2)/(t−1)))^4 )) =−∫_(1/2) ^1  (((t−1)^9 )/((t−1)^2 (t−2)^4 )) dt  =−∫_(1/2) ^1  (((t−1)^7 )/((t−2)^4 )) dt =_(t−2 =z)   −∫_(−(3/2)) ^(−1)   (((z+1)^7 )/z^4 ) dz   =−∫_(−(3/2)) ^(−1)  ((Σ_(k=0) ^7  C_7 ^k  z^k )/z^4 ) dz =−∫_(−(3/2)) ^(−1) Σ_(k=0) ^7  C_7 ^(k )  z^(k−4)  dz  =−Σ_(k=0) ^7  C_7 ^k  ∫_(−(3/2)) ^(−1)  z^(k−4)  dz  =−Σ_(k=0 and k≠3) ^7  C_7 ^k  [ (1/(k−3))z^(k−3) ]_(−(3/2)) ^(−1)   −C_7 ^3 [ln∣z∣]_(−(3/2)) ^(−1)   =−Σ_(k=0   (k≠3)) ^7    (C_7 ^k /(k−3))( (−1)^(k−3) −(−(3/2))^(k−3) )+C_7 ^3 ln((3/2))
I=1+dxx2(x+1)3(x+2)4I=1+dx(xx+1)2(x+1)5(x+2)4wedothechangementxx+1=tx=tx+t(1t)x=tx=t1tdxdt=1tt(1)(1t)2=1(t1)2andx+1=t1t+1=t+1t1t=11tandx+2=t1t+2=t+22t1t=2t1tI=121dt(t1)2(11t)5(t2t1)4=121(t1)9(t1)2(t2)4dt=121(t1)7(t2)4dt=t2=z321(z+1)7z4dz=321k=07C7kzkz4dz=321k=07C7kzk4dz=k=07C7k321zk4dz=k=0andk37C7k[1k3zk3]321C73[lnz]321=k=0(k3)7C7kk3((1)k3(32)k3)+C73ln(32)

Leave a Reply

Your email address will not be published. Required fields are marked *