Menu Close

calculate-1-dx-x-2-x-1-3-x-2-4-




Question Number 94906 by mathmax by abdo last updated on 21/May/20
calculate ∫_1 ^(+∞)    (dx/(x^2 (x+1)^3 (x+2)^4 ))
$$\mathrm{calculate}\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{4}} } \\ $$
Answered by MJS last updated on 22/May/20
∫(dx/(x^2 (x+1)^3 (x+2)^4 ))=       [Ostrogradski]  =((105x^5 +675x^4 +1565x^3 +1525x^2 +506x−12)/(24x(x+1)^2 (x+2)^3 ))+       +(5/8)∫((7x−1)/(x(x+1)(x+2)))dx    (5/8)∫((7x−1)/(x(x+1)(x+2)))dx=  =−(5/(16))∫(dx/x)+5∫(dx/(x+1))−((75)/(16))∫(dx/(x+2))=  =−(5/(16))ln x +5ln (x+1) −((75)/(16))ln (x+2) +C    ∫_1 ^∞ (dx/(x^2 (x+1)^3 (x+2)^4 ))=−((1091)/(648))+((75)/(16))ln 3 −5ln 2
$$\int\frac{{dx}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{4}} }= \\ $$$$\:\:\:\:\:\left[\mathrm{Ostrogradski}\right] \\ $$$$=\frac{\mathrm{105}{x}^{\mathrm{5}} +\mathrm{675}{x}^{\mathrm{4}} +\mathrm{1565}{x}^{\mathrm{3}} +\mathrm{1525}{x}^{\mathrm{2}} +\mathrm{506}{x}−\mathrm{12}}{\mathrm{24}{x}\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({x}+\mathrm{2}\right)^{\mathrm{3}} }+ \\ $$$$\:\:\:\:\:+\frac{\mathrm{5}}{\mathrm{8}}\int\frac{\mathrm{7}{x}−\mathrm{1}}{{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}{dx} \\ $$$$ \\ $$$$\frac{\mathrm{5}}{\mathrm{8}}\int\frac{\mathrm{7}{x}−\mathrm{1}}{{x}\left({x}+\mathrm{1}\right)\left({x}+\mathrm{2}\right)}{dx}= \\ $$$$=−\frac{\mathrm{5}}{\mathrm{16}}\int\frac{{dx}}{{x}}+\mathrm{5}\int\frac{{dx}}{{x}+\mathrm{1}}−\frac{\mathrm{75}}{\mathrm{16}}\int\frac{{dx}}{{x}+\mathrm{2}}= \\ $$$$=−\frac{\mathrm{5}}{\mathrm{16}}\mathrm{ln}\:{x}\:+\mathrm{5ln}\:\left({x}+\mathrm{1}\right)\:−\frac{\mathrm{75}}{\mathrm{16}}\mathrm{ln}\:\left({x}+\mathrm{2}\right)\:+{C} \\ $$$$ \\ $$$$\underset{\mathrm{1}} {\overset{\infty} {\int}}\frac{{dx}}{{x}^{\mathrm{2}} \left({x}+\mathrm{1}\right)^{\mathrm{3}} \left({x}+\mathrm{2}\right)^{\mathrm{4}} }=−\frac{\mathrm{1091}}{\mathrm{648}}+\frac{\mathrm{75}}{\mathrm{16}}\mathrm{ln}\:\mathrm{3}\:−\mathrm{5ln}\:\mathrm{2} \\ $$
Commented by mathmax by abdo last updated on 22/May/20
thank you sir.
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir}. \\ $$
Answered by mathmax by abdo last updated on 22/May/20
I =∫_1 ^(+∞)  (dx/(x^2 (x+1)^3 (x+2)^4 )) ⇒I =∫_1 ^(+∞)  (dx/(((x/(x+1)))^2  (x+1)^5 (x+2)^4 ))  we do the changement (x/(x+1)) =t ⇒x =tx+t ⇒(1−t)x=t ⇒  x =(t/(1−t)) ⇒(dx/dt) =((1−t−t(−1))/((1−t)^2 )) =(1/((t−1)^2 )) and x+1 =(t/(1−t)) +1  =((t+1−t)/(1−t)) =(1/(1−t))  and x+2 =(t/(1−t)) +2 =((t+2−2t)/(1−t)) =((2−t)/(1−t)) ⇒  I =∫_(1/2) ^1  (dt/((t−1)^2 ((1/(1−t)))^5 (((t−2)/(t−1)))^4 )) =−∫_(1/2) ^1  (((t−1)^9 )/((t−1)^2 (t−2)^4 )) dt  =−∫_(1/2) ^1  (((t−1)^7 )/((t−2)^4 )) dt =_(t−2 =z)   −∫_(−(3/2)) ^(−1)   (((z+1)^7 )/z^4 ) dz   =−∫_(−(3/2)) ^(−1)  ((Σ_(k=0) ^7  C_7 ^k  z^k )/z^4 ) dz =−∫_(−(3/2)) ^(−1) Σ_(k=0) ^7  C_7 ^(k )  z^(k−4)  dz  =−Σ_(k=0) ^7  C_7 ^k  ∫_(−(3/2)) ^(−1)  z^(k−4)  dz  =−Σ_(k=0 and k≠3) ^7  C_7 ^k  [ (1/(k−3))z^(k−3) ]_(−(3/2)) ^(−1)   −C_7 ^3 [ln∣z∣]_(−(3/2)) ^(−1)   =−Σ_(k=0   (k≠3)) ^7    (C_7 ^k /(k−3))( (−1)^(k−3) −(−(3/2))^(k−3) )+C_7 ^3 ln((3/2))
$$\mathrm{I}\:=\int_{\mathrm{1}} ^{+\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{2}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{3}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{4}} }\:\Rightarrow\mathrm{I}\:=\int_{\mathrm{1}} ^{+\infty} \:\frac{\mathrm{dx}}{\left(\frac{\mathrm{x}}{\mathrm{x}+\mathrm{1}}\right)^{\mathrm{2}} \:\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{5}} \left(\mathrm{x}+\mathrm{2}\right)^{\mathrm{4}} } \\ $$$$\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\frac{\mathrm{x}}{\mathrm{x}+\mathrm{1}}\:=\mathrm{t}\:\Rightarrow\mathrm{x}\:=\mathrm{tx}+\mathrm{t}\:\Rightarrow\left(\mathrm{1}−\mathrm{t}\right)\mathrm{x}=\mathrm{t}\:\Rightarrow \\ $$$$\mathrm{x}\:=\frac{\mathrm{t}}{\mathrm{1}−\mathrm{t}}\:\Rightarrow\frac{\mathrm{dx}}{\mathrm{dt}}\:=\frac{\mathrm{1}−\mathrm{t}−\mathrm{t}\left(−\mathrm{1}\right)}{\left(\mathrm{1}−\mathrm{t}\right)^{\mathrm{2}} }\:=\frac{\mathrm{1}}{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{and}\:\mathrm{x}+\mathrm{1}\:=\frac{\mathrm{t}}{\mathrm{1}−\mathrm{t}}\:+\mathrm{1} \\ $$$$=\frac{\mathrm{t}+\mathrm{1}−\mathrm{t}}{\mathrm{1}−\mathrm{t}}\:=\frac{\mathrm{1}}{\mathrm{1}−\mathrm{t}}\:\:\mathrm{and}\:\mathrm{x}+\mathrm{2}\:=\frac{\mathrm{t}}{\mathrm{1}−\mathrm{t}}\:+\mathrm{2}\:=\frac{\mathrm{t}+\mathrm{2}−\mathrm{2t}}{\mathrm{1}−\mathrm{t}}\:=\frac{\mathrm{2}−\mathrm{t}}{\mathrm{1}−\mathrm{t}}\:\Rightarrow \\ $$$$\mathrm{I}\:=\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\frac{\mathrm{dt}}{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} \left(\frac{\mathrm{1}}{\mathrm{1}−\mathrm{t}}\right)^{\mathrm{5}} \left(\frac{\mathrm{t}−\mathrm{2}}{\mathrm{t}−\mathrm{1}}\right)^{\mathrm{4}} }\:=−\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\frac{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{9}} }{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{t}−\mathrm{2}\right)^{\mathrm{4}} }\:\mathrm{dt} \\ $$$$=−\int_{\frac{\mathrm{1}}{\mathrm{2}}} ^{\mathrm{1}} \:\frac{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{7}} }{\left(\mathrm{t}−\mathrm{2}\right)^{\mathrm{4}} }\:\mathrm{dt}\:=_{\mathrm{t}−\mathrm{2}\:=\mathrm{z}} \:\:−\int_{−\frac{\mathrm{3}}{\mathrm{2}}} ^{−\mathrm{1}} \:\:\frac{\left(\mathrm{z}+\mathrm{1}\right)^{\mathrm{7}} }{\mathrm{z}^{\mathrm{4}} }\:\mathrm{dz}\: \\ $$$$=−\int_{−\frac{\mathrm{3}}{\mathrm{2}}} ^{−\mathrm{1}} \:\frac{\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{7}} \:\mathrm{C}_{\mathrm{7}} ^{\mathrm{k}} \:\mathrm{z}^{\mathrm{k}} }{\mathrm{z}^{\mathrm{4}} }\:\mathrm{dz}\:=−\int_{−\frac{\mathrm{3}}{\mathrm{2}}} ^{−\mathrm{1}} \sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{7}} \:\mathrm{C}_{\mathrm{7}} ^{\mathrm{k}\:} \:\mathrm{z}^{\mathrm{k}−\mathrm{4}} \:\mathrm{dz} \\ $$$$=−\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{7}} \:\mathrm{C}_{\mathrm{7}} ^{\mathrm{k}} \:\int_{−\frac{\mathrm{3}}{\mathrm{2}}} ^{−\mathrm{1}} \:\mathrm{z}^{\mathrm{k}−\mathrm{4}} \:\mathrm{dz} \\ $$$$=−\sum_{\mathrm{k}=\mathrm{0}\:\mathrm{and}\:\mathrm{k}\neq\mathrm{3}} ^{\mathrm{7}} \:\mathrm{C}_{\mathrm{7}} ^{\mathrm{k}} \:\left[\:\frac{\mathrm{1}}{\mathrm{k}−\mathrm{3}}\mathrm{z}^{\mathrm{k}−\mathrm{3}} \right]_{−\frac{\mathrm{3}}{\mathrm{2}}} ^{−\mathrm{1}} \:\:−\mathrm{C}_{\mathrm{7}} ^{\mathrm{3}} \left[\mathrm{ln}\mid\mathrm{z}\mid\right]_{−\frac{\mathrm{3}}{\mathrm{2}}} ^{−\mathrm{1}} \\ $$$$=−\sum_{\mathrm{k}=\mathrm{0}\:\:\:\left(\mathrm{k}\neq\mathrm{3}\right)} ^{\mathrm{7}} \:\:\:\frac{\mathrm{C}_{\mathrm{7}} ^{\mathrm{k}} }{\mathrm{k}−\mathrm{3}}\left(\:\left(−\mathrm{1}\right)^{\mathrm{k}−\mathrm{3}} −\left(−\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{k}−\mathrm{3}} \right)+\mathrm{C}_{\mathrm{7}} ^{\mathrm{3}} \mathrm{ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right) \\ $$$$\:\:\:\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *