Menu Close

calculate-1-dx-x-2-x-2-x-1-




Question Number 41302 by math khazana by abdo last updated on 05/Aug/18
calculate  ∫_1 ^(+∞)   (dx/(x^2 (√(x^2 +x+1))))
$${calculate}\:\:\int_{\mathrm{1}} ^{+\infty} \:\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} +{x}+\mathrm{1}}} \\ $$
Commented by maxmathsup by imad last updated on 05/Aug/18
let I = ∫_1 ^(+∞)    (dx/(x^2 (√(x^2  +x+1))))  I = ∫_1 ^(+∞)    (dx/(x^2 (√((x+(1/2))^2 +(3/4)))))  changement x+(1/2)=((√3)/2)tanθ give  I = ∫_(arctan((1/( (√3))))) ^(π/2)    (1/((((√3)/2)tanθ−(1/2))^2 ((√3)/2))) cos^2 θ ((√3)/2)(1+tan^2 θ)dθ  = ∫_(π/6) ^(π/2)           ((4dθ)/(((√3)tanθ−1)^2 )) = ∫_(π/6) ^(π/2)     (4/(3tan^2 θ −2(√3)tanθ +1))dθ  =_(tanθ =x)    ∫_(1/( (√3))) ^(+∞)         (4/((3x^2 −2(√(3x))+1))) (dx/(1+x^2 ))  let decompose   F(x) =  (4/((x^2  +1)(3x^2 −2(√3)x+1))) =(4/(((√3)x−1)^2 (x^2  +1)))  F(x)=(a/( (√3)x−1)) +(b/(((√3)x−1)^2 )) +((bx +c)/(x^2  +1))  b=lim_(x→(1/( (√3))))    ((√3)x−1)^2 F(x)= (4/(4/3)) =3  lim_(x→+∞) xF(x)=0 =(a/( (√3))) +b ⇒b=−(a/( (√3))) ⇒  F(x)= (a/( (√3)x−1)) +(3/(((√3)x−1)^2 )) +((−(a/( (√3)))x +c)/(x^2  +1))  F(0) =−a +3 +c ⇒c=a−3 ⇒  F(x)= (a/( (√3)x−1)) +(3/(((√3)x−1)^2 )) +((−(a/( (√3)))x +a−3)/(x^2  +1))  F((√3)) = (4/(4(4))) =(1/4) =(a/2) +(3/4) +((−3)/4) ⇒(a/2) =(1/4) ⇒a=(1/2) ⇒  F(x) = (1/(2((√3)x−1))) +(3/(((√3)x−1)^2 )) +((−(1/(2(√3)))x −(5/2))/(x^2  +1)) ⇒  ∫ F(x)dx =(1/(2(√3))) ∫    (dx/(x−(1/( (√3))))) + ∫      (dx/((x−(1/( (√3))))^2 ))  −(1/(2(√3))) ∫   ((x+5(√3))/(x^2  +1)) dx  =(1/(2(√3)))ln∣x−(1/( (√3)))∣ −(1/(x−(1/( (√3))))) −(1/(4(√3))) ∫   ((2x)/(x^2  +1)) −(5/2) ∫  (dx/(x^2  +1))  =(1/(2(√3)))ln∣x−(1/( (√3)))∣ −(1/(x−(1/( (√3))))) −(1/(4(√3)))ln(x^2  +1)−(5/2) arctanx +c  ⇒  ∫_(1/( (√3))) ^(+∞) F(x)dx =....(put the lmits)
$${let}\:{I}\:=\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{{x}^{\mathrm{2}} \:+{x}+\mathrm{1}}} \\ $$$${I}\:=\:\int_{\mathrm{1}} ^{+\infty} \:\:\:\frac{{dx}}{{x}^{\mathrm{2}} \sqrt{\left({x}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\frac{\mathrm{3}}{\mathrm{4}}}}\:\:{changement}\:{x}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{tan}\theta\:{give} \\ $$$${I}\:=\:\int_{{arctan}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{\mathrm{1}}{\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{tan}\theta−\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} \frac{\sqrt{\mathrm{3}}}{\mathrm{2}}}\:{cos}^{\mathrm{2}} \theta\:\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\left(\mathrm{1}+{tan}^{\mathrm{2}} \theta\right){d}\theta \\ $$$$=\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\:\:\:\:\frac{\mathrm{4}{d}\theta}{\left(\sqrt{\mathrm{3}}{tan}\theta−\mathrm{1}\right)^{\mathrm{2}} }\:=\:\int_{\frac{\pi}{\mathrm{6}}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\frac{\mathrm{4}}{\mathrm{3}{tan}^{\mathrm{2}} \theta\:−\mathrm{2}\sqrt{\mathrm{3}}{tan}\theta\:+\mathrm{1}}{d}\theta \\ $$$$=_{{tan}\theta\:={x}} \:\:\:\int_{\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}} ^{+\infty} \:\:\:\:\:\:\:\:\frac{\mathrm{4}}{\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}{x}}+\mathrm{1}\right)}\:\frac{{dx}}{\mathrm{1}+{x}^{\mathrm{2}} }\:\:{let}\:{decompose}\: \\ $$$${F}\left({x}\right)\:=\:\:\frac{\mathrm{4}}{\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{2}\sqrt{\mathrm{3}}{x}+\mathrm{1}\right)}\:=\frac{\mathrm{4}}{\left(\sqrt{\mathrm{3}}{x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} \:+\mathrm{1}\right)} \\ $$$${F}\left({x}\right)=\frac{{a}}{\:\sqrt{\mathrm{3}}{x}−\mathrm{1}}\:+\frac{{b}}{\left(\sqrt{\mathrm{3}}{x}−\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{{bx}\:+{c}}{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${b}={lim}_{{x}\rightarrow\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}} \:\:\:\left(\sqrt{\mathrm{3}}{x}−\mathrm{1}\right)^{\mathrm{2}} {F}\left({x}\right)=\:\frac{\mathrm{4}}{\frac{\mathrm{4}}{\mathrm{3}}}\:=\mathrm{3} \\ $$$${lim}_{{x}\rightarrow+\infty} {xF}\left({x}\right)=\mathrm{0}\:=\frac{{a}}{\:\sqrt{\mathrm{3}}}\:+{b}\:\Rightarrow{b}=−\frac{{a}}{\:\sqrt{\mathrm{3}}}\:\Rightarrow \\ $$$${F}\left({x}\right)=\:\frac{{a}}{\:\sqrt{\mathrm{3}}{x}−\mathrm{1}}\:+\frac{\mathrm{3}}{\left(\sqrt{\mathrm{3}}{x}−\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{−\frac{{a}}{\:\sqrt{\mathrm{3}}}{x}\:+{c}}{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${F}\left(\mathrm{0}\right)\:=−{a}\:+\mathrm{3}\:+{c}\:\Rightarrow{c}={a}−\mathrm{3}\:\Rightarrow \\ $$$${F}\left({x}\right)=\:\frac{{a}}{\:\sqrt{\mathrm{3}}{x}−\mathrm{1}}\:+\frac{\mathrm{3}}{\left(\sqrt{\mathrm{3}}{x}−\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{−\frac{{a}}{\:\sqrt{\mathrm{3}}}{x}\:+{a}−\mathrm{3}}{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$${F}\left(\sqrt{\mathrm{3}}\right)\:=\:\frac{\mathrm{4}}{\mathrm{4}\left(\mathrm{4}\right)}\:=\frac{\mathrm{1}}{\mathrm{4}}\:=\frac{{a}}{\mathrm{2}}\:+\frac{\mathrm{3}}{\mathrm{4}}\:+\frac{−\mathrm{3}}{\mathrm{4}}\:\Rightarrow\frac{{a}}{\mathrm{2}}\:=\frac{\mathrm{1}}{\mathrm{4}}\:\Rightarrow{a}=\frac{\mathrm{1}}{\mathrm{2}}\:\Rightarrow \\ $$$${F}\left({x}\right)\:=\:\frac{\mathrm{1}}{\mathrm{2}\left(\sqrt{\mathrm{3}}{x}−\mathrm{1}\right)}\:+\frac{\mathrm{3}}{\left(\sqrt{\mathrm{3}}{x}−\mathrm{1}\right)^{\mathrm{2}} }\:+\frac{−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}{x}\:−\frac{\mathrm{5}}{\mathrm{2}}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:\Rightarrow \\ $$$$\int\:{F}\left({x}\right){dx}\:=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\int\:\:\:\:\frac{{dx}}{{x}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\:+\:\int\:\:\:\:\:\:\frac{{dx}}{\left({x}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)^{\mathrm{2}} }\:\:−\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}\:\int\:\:\:\frac{{x}+\mathrm{5}\sqrt{\mathrm{3}}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:{dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}{ln}\mid{x}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mid\:−\frac{\mathrm{1}}{{x}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\:−\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{3}}}\:\int\:\:\:\frac{\mathrm{2}{x}}{{x}^{\mathrm{2}} \:+\mathrm{1}}\:−\frac{\mathrm{5}}{\mathrm{2}}\:\int\:\:\frac{{dx}}{{x}^{\mathrm{2}} \:+\mathrm{1}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}\sqrt{\mathrm{3}}}{ln}\mid{x}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mid\:−\frac{\mathrm{1}}{{x}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\:−\frac{\mathrm{1}}{\mathrm{4}\sqrt{\mathrm{3}}}{ln}\left({x}^{\mathrm{2}} \:+\mathrm{1}\right)−\frac{\mathrm{5}}{\mathrm{2}}\:{arctanx}\:+{c}\:\:\Rightarrow \\ $$$$\int_{\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}} ^{+\infty} {F}\left({x}\right){dx}\:=….\left({put}\:{the}\:{lmits}\right) \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Aug/18
∫_1 ^∞ ((1/x^2 )/( (√(x^2 (1+(1/x)+(1/x^(2 ) ))))))dx  t=(1/x)   dt=−(1/x^2 )dx  ∫_1 ^0 ((−dt)/( (√((1/t^2 )(1+t+t^2 )))))  ∫_0 ^1 ((tdt)/( (√(t^2 +t+1))))  =(1/2)∫_0 ^1 ((2t+1−1)/( (√(t^2 +t+1))))dt  =(1/2)∫_0 ^1 ((2t+1)/( (√(t^2 +t+1))))−(1/2)∫_0 ^1 (dt/( (√(t^2 +2.t.(1/2)+(1/4)+1−(1/4)))))  =(1/2)∫_0 ^1 ((d(t^2 +t+1))/( (√(t^2 +t+1))))−(1/2)∫_0 ^1 (dt/( (√((t+(1/2))^2 +(((√3)/2))^2 ))))  =(1/2)∣((√(t^2 +t+1))/(1/2))∣_0 ^1 −(1/2)∣ln{(t+(1/2))+(√((t+(1/2))^2 +(((√3)/2))^2 )) }∣_0 ^1   =((√3) −1)−(1/2){ln((3/2)+(√((3/4)+(3/4))) )−ln((1/2)+1)}  =((√3) −1)−(1/2){ln(((3+(√6))/2))−ln((3/2))}  =((√3) −1)−(1/2){ln(((3+(√6))/3))}
$$\int_{\mathrm{1}} ^{\infty} \frac{\frac{\mathrm{1}}{{x}^{\mathrm{2}} }}{\:\sqrt{{x}^{\mathrm{2}} \left(\mathrm{1}+\frac{\mathrm{1}}{{x}}+\frac{\mathrm{1}}{{x}^{\mathrm{2}\:} }\right)}}{dx} \\ $$$${t}=\frac{\mathrm{1}}{{x}}\:\:\:{dt}=−\frac{\mathrm{1}}{{x}^{\mathrm{2}} }{dx} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{0}} \frac{−{dt}}{\:\sqrt{\frac{\mathrm{1}}{{t}^{\mathrm{2}} }\left(\mathrm{1}+{t}+{t}^{\mathrm{2}} \right)}} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{tdt}}{\:\sqrt{{t}^{\mathrm{2}} +{t}+\mathrm{1}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{t}+\mathrm{1}−\mathrm{1}}{\:\sqrt{{t}^{\mathrm{2}} +{t}+\mathrm{1}}}{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{2}{t}+\mathrm{1}}{\:\sqrt{{t}^{\mathrm{2}} +{t}+\mathrm{1}}}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\:\sqrt{{t}^{\mathrm{2}} +\mathrm{2}.{t}.\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}}+\mathrm{1}−\frac{\mathrm{1}}{\mathrm{4}}}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{d}\left({t}^{\mathrm{2}} +{t}+\mathrm{1}\right)}{\:\sqrt{{t}^{\mathrm{2}} +{t}+\mathrm{1}}}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{dt}}{\:\sqrt{\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} }} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\mid\frac{\sqrt{{t}^{\mathrm{2}} +{t}+\mathrm{1}}}{\frac{\mathrm{1}}{\mathrm{2}}}\mid_{\mathrm{0}} ^{\mathrm{1}} −\frac{\mathrm{1}}{\mathrm{2}}\mid{ln}\left\{\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)+\sqrt{\left({t}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)^{\mathrm{2}} }\:\right\}\mid_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\left(\sqrt{\mathrm{3}}\:−\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left(\frac{\mathrm{3}}{\mathrm{2}}+\sqrt{\frac{\mathrm{3}}{\mathrm{4}}+\frac{\mathrm{3}}{\mathrm{4}}}\:\right)−{ln}\left(\frac{\mathrm{1}}{\mathrm{2}}+\mathrm{1}\right)\right\} \\ $$$$=\left(\sqrt{\mathrm{3}}\:−\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left(\frac{\mathrm{3}+\sqrt{\mathrm{6}}}{\mathrm{2}}\right)−{ln}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)\right\} \\ $$$$=\left(\sqrt{\mathrm{3}}\:−\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{2}}\left\{{ln}\left(\frac{\mathrm{3}+\sqrt{\mathrm{6}}}{\mathrm{3}}\right)\right\} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *