calculate-1-dx-x-2-x-2-x-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 41302 by math khazana by abdo last updated on 05/Aug/18 calculate∫1+∞dxx2x2+x+1 Commented by maxmathsup by imad last updated on 05/Aug/18 letI=∫1+∞dxx2x2+x+1I=∫1+∞dxx2(x+12)2+34changementx+12=32tanθgiveI=∫arctan(13)π21(32tanθ−12)232cos2θ32(1+tan2θ)dθ=∫π6π24dθ(3tanθ−1)2=∫π6π243tan2θ−23tanθ+1dθ=tanθ=x∫13+∞4(3x2−23x+1)dx1+x2letdecomposeF(x)=4(x2+1)(3x2−23x+1)=4(3x−1)2(x2+1)F(x)=a3x−1+b(3x−1)2+bx+cx2+1b=limx→13(3x−1)2F(x)=443=3limx→+∞xF(x)=0=a3+b⇒b=−a3⇒F(x)=a3x−1+3(3x−1)2+−a3x+cx2+1F(0)=−a+3+c⇒c=a−3⇒F(x)=a3x−1+3(3x−1)2+−a3x+a−3x2+1F(3)=44(4)=14=a2+34+−34⇒a2=14⇒a=12⇒F(x)=12(3x−1)+3(3x−1)2+−123x−52x2+1⇒∫F(x)dx=123∫dxx−13+∫dx(x−13)2−123∫x+53x2+1dx=123ln∣x−13∣−1x−13−143∫2xx2+1−52∫dxx2+1=123ln∣x−13∣−1x−13−143ln(x2+1)−52arctanx+c⇒∫13+∞F(x)dx=….(putthelmits) Answered by tanmay.chaudhury50@gmail.com last updated on 05/Aug/18 ∫1∞1x2x2(1+1x+1x2)dxt=1xdt=−1x2dx∫10−dt1t2(1+t+t2)∫01tdtt2+t+1=12∫012t+1−1t2+t+1dt=12∫012t+1t2+t+1−12∫01dtt2+2.t.12+14+1−14=12∫01d(t2+t+1)t2+t+1−12∫01dt(t+12)2+(32)2=12∣t2+t+112∣01−12∣ln{(t+12)+(t+12)2+(32)2}∣01=(3−1)−12{ln(32+34+34)−ln(12+1)}=(3−1)−12{ln(3+62)−ln(32)}=(3−1)−12{ln(3+63)} Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: let-f-x-0-e-ax-ln-1-e-bx-dx-with-a-gt-0-and-b-gt-0-1-calculate-f-a-x-2-calculate-f-b-x-3-find-the-value-of-0-e-2x-ln-1-e-x-dx-and-0-e-x-ln-1-e-2x-Next Next post: Please-any-geometry-proof-on-shortest-distance-between-two-places-Topic-longitude-and-latitude- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.