Menu Close

calculate-1-dx-x-2-x-2-x-1-




Question Number 41302 by math khazana by abdo last updated on 05/Aug/18
calculate  ∫_1 ^(+∞)   (dx/(x^2 (√(x^2 +x+1))))
calculate1+dxx2x2+x+1
Commented by maxmathsup by imad last updated on 05/Aug/18
let I = ∫_1 ^(+∞)    (dx/(x^2 (√(x^2  +x+1))))  I = ∫_1 ^(+∞)    (dx/(x^2 (√((x+(1/2))^2 +(3/4)))))  changement x+(1/2)=((√3)/2)tanθ give  I = ∫_(arctan((1/( (√3))))) ^(π/2)    (1/((((√3)/2)tanθ−(1/2))^2 ((√3)/2))) cos^2 θ ((√3)/2)(1+tan^2 θ)dθ  = ∫_(π/6) ^(π/2)           ((4dθ)/(((√3)tanθ−1)^2 )) = ∫_(π/6) ^(π/2)     (4/(3tan^2 θ −2(√3)tanθ +1))dθ  =_(tanθ =x)    ∫_(1/( (√3))) ^(+∞)         (4/((3x^2 −2(√(3x))+1))) (dx/(1+x^2 ))  let decompose   F(x) =  (4/((x^2  +1)(3x^2 −2(√3)x+1))) =(4/(((√3)x−1)^2 (x^2  +1)))  F(x)=(a/( (√3)x−1)) +(b/(((√3)x−1)^2 )) +((bx +c)/(x^2  +1))  b=lim_(x→(1/( (√3))))    ((√3)x−1)^2 F(x)= (4/(4/3)) =3  lim_(x→+∞) xF(x)=0 =(a/( (√3))) +b ⇒b=−(a/( (√3))) ⇒  F(x)= (a/( (√3)x−1)) +(3/(((√3)x−1)^2 )) +((−(a/( (√3)))x +c)/(x^2  +1))  F(0) =−a +3 +c ⇒c=a−3 ⇒  F(x)= (a/( (√3)x−1)) +(3/(((√3)x−1)^2 )) +((−(a/( (√3)))x +a−3)/(x^2  +1))  F((√3)) = (4/(4(4))) =(1/4) =(a/2) +(3/4) +((−3)/4) ⇒(a/2) =(1/4) ⇒a=(1/2) ⇒  F(x) = (1/(2((√3)x−1))) +(3/(((√3)x−1)^2 )) +((−(1/(2(√3)))x −(5/2))/(x^2  +1)) ⇒  ∫ F(x)dx =(1/(2(√3))) ∫    (dx/(x−(1/( (√3))))) + ∫      (dx/((x−(1/( (√3))))^2 ))  −(1/(2(√3))) ∫   ((x+5(√3))/(x^2  +1)) dx  =(1/(2(√3)))ln∣x−(1/( (√3)))∣ −(1/(x−(1/( (√3))))) −(1/(4(√3))) ∫   ((2x)/(x^2  +1)) −(5/2) ∫  (dx/(x^2  +1))  =(1/(2(√3)))ln∣x−(1/( (√3)))∣ −(1/(x−(1/( (√3))))) −(1/(4(√3)))ln(x^2  +1)−(5/2) arctanx +c  ⇒  ∫_(1/( (√3))) ^(+∞) F(x)dx =....(put the lmits)
letI=1+dxx2x2+x+1I=1+dxx2(x+12)2+34changementx+12=32tanθgiveI=arctan(13)π21(32tanθ12)232cos2θ32(1+tan2θ)dθ=π6π24dθ(3tanθ1)2=π6π243tan2θ23tanθ+1dθ=tanθ=x13+4(3x223x+1)dx1+x2letdecomposeF(x)=4(x2+1)(3x223x+1)=4(3x1)2(x2+1)F(x)=a3x1+b(3x1)2+bx+cx2+1b=limx13(3x1)2F(x)=443=3limx+xF(x)=0=a3+bb=a3F(x)=a3x1+3(3x1)2+a3x+cx2+1F(0)=a+3+cc=a3F(x)=a3x1+3(3x1)2+a3x+a3x2+1F(3)=44(4)=14=a2+34+34a2=14a=12F(x)=12(3x1)+3(3x1)2+123x52x2+1F(x)dx=123dxx13+dx(x13)2123x+53x2+1dx=123lnx131x131432xx2+152dxx2+1=123lnx131x13143ln(x2+1)52arctanx+c13+F(x)dx=.(putthelmits)
Answered by tanmay.chaudhury50@gmail.com last updated on 05/Aug/18
∫_1 ^∞ ((1/x^2 )/( (√(x^2 (1+(1/x)+(1/x^(2 ) ))))))dx  t=(1/x)   dt=−(1/x^2 )dx  ∫_1 ^0 ((−dt)/( (√((1/t^2 )(1+t+t^2 )))))  ∫_0 ^1 ((tdt)/( (√(t^2 +t+1))))  =(1/2)∫_0 ^1 ((2t+1−1)/( (√(t^2 +t+1))))dt  =(1/2)∫_0 ^1 ((2t+1)/( (√(t^2 +t+1))))−(1/2)∫_0 ^1 (dt/( (√(t^2 +2.t.(1/2)+(1/4)+1−(1/4)))))  =(1/2)∫_0 ^1 ((d(t^2 +t+1))/( (√(t^2 +t+1))))−(1/2)∫_0 ^1 (dt/( (√((t+(1/2))^2 +(((√3)/2))^2 ))))  =(1/2)∣((√(t^2 +t+1))/(1/2))∣_0 ^1 −(1/2)∣ln{(t+(1/2))+(√((t+(1/2))^2 +(((√3)/2))^2 )) }∣_0 ^1   =((√3) −1)−(1/2){ln((3/2)+(√((3/4)+(3/4))) )−ln((1/2)+1)}  =((√3) −1)−(1/2){ln(((3+(√6))/2))−ln((3/2))}  =((√3) −1)−(1/2){ln(((3+(√6))/3))}
11x2x2(1+1x+1x2)dxt=1xdt=1x2dx10dt1t2(1+t+t2)01tdtt2+t+1=12012t+11t2+t+1dt=12012t+1t2+t+11201dtt2+2.t.12+14+114=1201d(t2+t+1)t2+t+11201dt(t+12)2+(32)2=12t2+t+1120112ln{(t+12)+(t+12)2+(32)2}01=(31)12{ln(32+34+34)ln(12+1)}=(31)12{ln(3+62)ln(32)}=(31)12{ln(3+63)}

Leave a Reply

Your email address will not be published. Required fields are marked *