Menu Close

calculate-1-dx-x-3-2-x-2-




Question Number 43905 by abdo.msup.com last updated on 17/Sep/18
calculate ∫_1 ^(+∞)   (dx/(x^3 (√(2+x^2 ))))
calculate1+dxx32+x2
Commented by maxmathsup by imad last updated on 18/Sep/18
let A = ∫_1 ^(+∞)  (dx/(x^3 (√(2+x^2 ))))dx changement x =(√2)sh(t) give  A = ∫_(argsh((1/( (√2))))) ^(+∞)       (((√2)ch(t)dt)/(2(√2)sh^3 (t)(√2)ch(t))) =(1/(2(√2))) ∫_(ln((1/( (√2) ))+(√(3/2)))) ^(+∞)   (dt/((((e^t  −e^(−t) )/2))^3 ))  =(4/( (√2)))  ∫_(ln((1/( (√2)))+((√3)/( (√2))))) ^(+∞)          (dt/(e^(3t)  +3 e^(2t)  e^(−t)  +3 e^t  e^(−2t)  +e^(−3t) ))  =_(e^t =u)     2(√2)∫_((1+(√3))/( (√2))) ^(+∞)          (1/(u^3  +3u  +3u^(−1)  +u^(−3) )) (du/u)  =2(√2) ∫_((1+(√3))/( (√2))) ^(+∞)        (du/(u^4  +3u^2  +3 +u^(−2) )) =2(√2) ∫_((1+(√3))/( (√2))) ^(+∞)      (u^2 /(u^6  +3u^4  +3u^2  +1))du  let decompose F(u) =(u^2 /(u^6  +3u^4  +3 u^2  +1))  we have F(u)=(u^2 /((u^2  +1)^3 ))  F(u) =((au +b)/(u^2  +1)) +((cu +d)/((u^2  +1)^2 )) +((eu +f)/((u^2  +1)^3 ))  F(−u)=F(u) ⇒a =c=e =0 ⇒F(u) =(b/(u^2  +1)) +(d/((u^2  +1)^2 )) +(f/((u^2  +1)^3 ))  lim_(u→+∞) u^2 F(u)=0 =b ⇒F(u) =(d/((u^2  +1)^2 )) +(f/((u^2  +1)^3 ))  lim_(u→+∞) u^4  F(u) =1 = d ⇒F(u) =(1/((u^2  +1)^2 )) +(f/((u^2  +1)^3 ))  F(0) =0 =1+f ⇒f=−1 ⇒F(u) =(1/((u^2  +1)^2 )) −(1/((u^2  +1)^3 )) ⇒  ∫ F(u)du = ∫    (du/((u^2  +1)^2 )) −∫     (du/((u^2  +1)^3 ))  changement u=tanθ give  ∫     (du/((1+u^2 )^2 )) =∫   ((1+tan^2 θ)/((1+tan^2 θ)^2 )) dθ = ∫cos^2 θ dθ  =∫ ((1+cos(2θ))/2)dθ  =(θ/2) +(1/4) sin(2θ) =(θ/2) +(1/4) ((2tanθ)/(1+tan^2 θ)) =((arctan(u))/2) +(u/(1+u^2 ))  =((arctan(e^t ))/2) + (e^t /(1+e^(2t) ))  =....be continued...
letA=1+dxx32+x2dxchangementx=2sh(t)giveA=argsh(12)+2ch(t)dt22sh3(t)2ch(t)=122ln(12+32)+dt(etet2)3=42ln(12+32)+dte3t+3e2tet+3ete2t+e3t=et=u221+32+1u3+3u+3u1+u3duu=221+32+duu4+3u2+3+u2=221+32+u2u6+3u4+3u2+1duletdecomposeF(u)=u2u6+3u4+3u2+1wehaveF(u)=u2(u2+1)3F(u)=au+bu2+1+cu+d(u2+1)2+eu+f(u2+1)3F(u)=F(u)a=c=e=0F(u)=bu2+1+d(u2+1)2+f(u2+1)3limu+u2F(u)=0=bF(u)=d(u2+1)2+f(u2+1)3limu+u4F(u)=1=dF(u)=1(u2+1)2+f(u2+1)3F(0)=0=1+ff=1F(u)=1(u2+1)21(u2+1)3F(u)du=du(u2+1)2du(u2+1)3changementu=tanθgivedu(1+u2)2=1+tan2θ(1+tan2θ)2dθ=cos2θdθ=1+cos(2θ)2dθ=θ2+14sin(2θ)=θ2+142tanθ1+tan2θ=arctan(u)2+u1+u2=arctan(et)2+et1+e2t=.becontinued
Answered by tanmay.chaudhury50@gmail.com last updated on 18/Sep/18
x=(√2) tanα  dx=(√2) sec^2 α dα  ∫_(tan^(−1) ((1/( (√2) )))) ^(Π/2)  (((√2) sec^2 αdα)/(2^(3/2) tan^3 α ×(√(2+2tan^2 α)) ))  ∫_(tan^(−1) ((1/( (√2))))) ^(Π/2)   (((√2) sec^2 α)/(2^2 ×tan^3 α×secα))dα  (1/(2(√2) ))∫_(tan^(−1) ((1/( (√2))))) ^(Π/2)   ((secα)/(tan^3 α))dα  (1/(2(√2) ))∫_(tan^(−1) ((1/( (√2_ ))))) ^(Π/2)  ((cos^2 α)/(sin^3 α))dα      or approach  ∫_1 ^∞ (dx/(x^3 (√(2+x^2 ))))  ∫_1 ^∞ ((xdx)/(x^4 (√(2+x^2 )) ))    t^2 =2+x^2     2tdt=2xdx  ∫ ((tdt)/((t^2 −2)^2 ×t))  ∫ (dt/((t+(√2) )^2 ×(t−(√2) )^2 ))  (1/((t^2 −2)^2 ))=(a/(t+(√2)))+(b/((t+(√2))^2 ))+(c/(t−(√2)))+(d/((t−(√2) )^2 ))  1=a(t+(√2) )(t−(√2) )^2 +b(t−(√2) )^2 +c(t−(√2) )(t+(√2) )^2 +d(t+(√2) )^2   t+(√2) =0  1=b(−2(√2) )^2   b=(1/8)  t−(√2) =0   1=d(2(√2) )^2   d=(1/8)  t=0  1=a×2(√2) +(1/8)×2+c(−2(√2) )+(1/8)×2  1−(1/2)=2(√2)  (a−c)  a−c=(1/(4(√2) ))  t=2(√2)   1=a(3(√2) )(2)+(1/8)(2)+c((√2) )(18)+(1/8)×18  1−(1/4)−(9/4)=6(√2) a+18(√2) c  ((4−1−9)/4)=6(√2) (a+3c)  a+3c=((−6)/(4×6(√2) ))=((−1)/(4(√2) ))  a−c=(1/(4(√2) ))  a+3c=((−1)/(4(√2)))  −4c=(2/(4(√2) ))  c=((−1)/(8(√2) ))  a=(1/(4(√2)))−(1/(8(√2) ))=(1/(8(√2) ))  ∫(a/(t+(√2) ))dt+∫(b/((t+(√2) )^2 ))dt+∫(c/(t−(√2) ))dt+∫(d/((t−(√2) )^2 ))  (1/(8(√2) ))ln(t+(√2) )+(1/8)×((−1)/((t+(√2) )))+((−1)/(8(√2) ))ln(t−(√2)  )+(1/8)×((−1)/((t−(√2) )))  (1/(8(√2)))ln(((t+(√2))/(t−(√2) )))−(1/8)((1/(t+(√2) ))+(1/(t−(√2))))  (1/(8(√2) ))ln((((√(2+x^2 )) +(√2))/( (√(2+x^2 ))  −(√2))))−(1/8)(((2(√(2+x^2 )) )/(2+x^2 −2)))  ans is  ∣(1/(8(√2)))ln((((√(2+x^2 )) +(√2))/( (√(2+x^2 )) −(√2))))−(1/4)(((√(2+x^2 ))/x^2 ))∣_1 ^∞   =(1/(8(√2)))∣ln(((1+(((√2) )/( (√(2+x^2 )) )))/(1−((√2)/( (√(2+x^2  )))))))−(1/4)((x/x^2 )(√(1+(2/x^2 ))) )∣_1 ^∞   =(1/(8(√2)))[{ln(((1+0)/(1−0)))−(1/4)(0×(√(1+0)) }−{ln((((√3) +(√2))/( (√3) −(√2))))−(1/4)((√3) )  (1/(8(√2)))[((√3)/4)−ln((((√3) +(√2))/( (√3) −(√2))))]
x=2tanαdx=2sec2αdαtan1(12)Π22sec2αdα232tan3α×2+2tan2αtan1(12)Π22sec2α22×tan3α×secαdα122tan1(12)Π2secαtan3αdα122tan1(12)Π2cos2αsin3αdαorapproach1dxx32+x21xdxx42+x2t2=2+x22tdt=2xdxtdt(t22)2×tdt(t+2)2×(t2)21(t22)2=at+2+b(t+2)2+ct2+d(t2)21=a(t+2)(t2)2+b(t2)2+c(t2)(t+2)2+d(t+2)2t+2=01=b(22)2b=18t2=01=d(22)2d=18t=01=a×22+18×2+c(22)+18×2112=22(ac)ac=142t=221=a(32)(2)+18(2)+c(2)(18)+18×1811494=62a+182c4194=62(a+3c)a+3c=64×62=142ac=142a+3c=1424c=242c=182a=142182=182at+2dt+b(t+2)2dt+ct2dt+d(t2)2182ln(t+2)+18×1(t+2)+182ln(t2)+18×1(t2)182ln(t+2t2)18(1t+2+1t2)182ln(2+x2+22+x22)18(22+x22+x22)ansis182ln(2+x2+22+x22)14(2+x2x2)1=182ln(1+22+x2122+x2)14(xx21+2x2)1=182[{ln(1+010)14(0×1+0}{ln(3+232)14(3)182[34ln(3+232)]

Leave a Reply

Your email address will not be published. Required fields are marked *