Menu Close

calculate-1-dx-x-3-2x-1-4-1-without-use-of-decomposition-2-by-use-of-decomposition-




Question Number 95584 by turbo msup by abdo last updated on 26/May/20
calculate ∫_1 ^(+∞)  (dx/(x^3 (2x+1)^4 ))  1)without use of decomposition  2)by use of decomposition
calculate1+dxx3(2x+1)41)withoutuseofdecomposition2)byuseofdecomposition
Answered by MJS last updated on 26/May/20
Ostrogradski leads to  ((960x^4 +1200x^3 +440x^2 +30x−3)/(6x^2 (2x+1)^3 ))+40∫(dx/(x(2x+1)))=  =((960x^4 +1200x^3 +440x^2 +30x−3)/(6x^2 (2x+1)^3 ))+40ln (x/(2x+1)) +C  ⇒  ∫_1 ^(+∞)  (dx/(x^3 (2x+1)^4 ))=40ln (3/2) −((2627)/(162))
Ostrogradskileadsto960x4+1200x3+440x2+30x36x2(2x+1)3+40dxx(2x+1)==960x4+1200x3+440x2+30x36x2(2x+1)3+40lnx2x+1+C+1dxx3(2x+1)4=40ln322627162
Commented by mathmax by abdo last updated on 26/May/20
thank you sir mjs
thankyousirmjs
Answered by mathmax by abdo last updated on 26/May/20
A =∫_1 ^(+∞)  (dx/(x^3 (2x+1)^4 ))⇒A =∫_1 ^(+∞)  (dx/(((x/(2x+1)))^3 (2x+1)^7 ))  we do the changement (x/(2x+1)) =t ⇒  x =2tx +t ⇒(1−2t)x =t ⇒x =(t/(1−2t)) ⇒(dx/dt) =((1−2t −t(−2t))/((1−2t)^2 ))  =(1/((1−2t)^2 ))   and 2x+1 =((2t)/(1−2t)) +1 =(1/(1−2t)) ⇒  A = ∫_(1/3) ^(1/2)    (dt/((2t−1)^2  t^3 ((1/(1−2t)))^7 )) =−∫_(1/3) ^(1/2)  (((2t−1)^7 )/((2t−1)^2  t^3 ))dt  =−∫_(1/3) ^(1/2)   (((2t−1)^5 )/t^3 ) dt  =−∫_(1/3) ^(1/2)  ((Σ_(k=0) ^5  C_5 ^k (2t)^k (−1)^(5−k) )/t^3 )dt  =∫_(1/3) ^(1/2)  ((Σ_(k=0) ^5  2^k (−1)^k  C_5 ^k   t^k )/t^3 )dt  =Σ_(k=0) ^5  C_5 ^k (−2)^k   ∫_(1/3) ^(1/2)  t^(k−3)  dt  =Σ_(k=0 and k≠2) ^5  (−2)^k  C_5 ^k  [(1/(k−2))t^(k−2) ]_(1/3) ^(1/2)   +4 C_5 ^2  [lnt]_(1/3) ^(1/2)   =Σ_(k=0 and k≠2) ^5  (−2)^k  (C_5 ^k /(k−2)){ ((1/2))^(k−2) −((1/3))^(k−2) }+4C_5 ^2 {ln((1/2))−ln((1/3))}
A=1+dxx3(2x+1)4A=1+dx(x2x+1)3(2x+1)7wedothechangementx2x+1=tx=2tx+t(12t)x=tx=t12tdxdt=12tt(2t)(12t)2=1(12t)2and2x+1=2t12t+1=112tA=1312dt(2t1)2t3(112t)7=1312(2t1)7(2t1)2t3dt=1312(2t1)5t3dt=1312k=05C5k(2t)k(1)5kt3dt=1312k=052k(1)kC5ktkt3dt=k=05C5k(2)k1312tk3dt=k=0andk25(2)kC5k[1k2tk2]1312+4C52[lnt]1312=k=0andk25(2)kC5kk2{(12)k2(13)k2}+4C52{ln(12)ln(13)}
Answered by mathmax by abdo last updated on 27/May/20
thank you sir mjs  2) let decompose F(x) =(1/(x^3 (2x+1)^4 )) ⇒  2^4 F(x) =(1/(x^3 (x+(1/2))^4 )) =Σ_(i=1) ^3  (a_i /x^i ) +Σ_(i=1) ^4  (b_i /((x+(1/2))^i ))  a_i ?  we find D_2 (0)for f(x) =(x+(1/2))^(−4)   f(x)=f(0) +(x/(1!))f^′ (0) +(x^2 /(2!))f^((2)) (0) +(x^3 /(3!))ξ(x)  f(0) =(1/2^(−4) )  ,f^′ (x) =−4(x+(1/2))^(−5)  ⇒f^′ (0) =((−4)/2^(−5) )  f^((2)) (x) =20(x+(1/2))^(−6)  ⇒f^((2)) (0) =((20)/2^(−6) ) ⇒  f(x) =2^4  −4 .2^5  x +10 .2^6  x^2  +(x^3 /(3!))ξ(x) ⇒  ((f(x))/x^3 ) =(2^4 /x^3 ) −((4.2^5 )/x^2 ) +((10.2^6 )/x) +(1/(3!))ξ(x) ⇒a_1 =10.2^6   a_2 =−4.2^5   and a_3 =2^4  let find b_i   we determine D_3 (−(1/2)) for g(x) =x^(−3)   g(x) =g(−(1/2))+((x+(1/2))/(1!))g^′ (−(1/2)) +(((x+(1/2))^2 )/(2!))g^((2)) (−(1/2))  +(((x+(1/2))^3 )/(3!))g^((3)) (−(1/2))+(((x+(1/2))^4 )/(4!))ξ(x)  g(−(1/2))=(−(1/2))^(−3)  ,g^′ (x)=−3x^(−4)  ⇒g^′ (−(1/2))=−3(−(1/2))^(−4)   g^((2)) (x) =12 x^(−5)  ⇒g^((2)) (−(1/2)) =12(−(1/2))^(−5)   g^((3)) (x) =−60 x^(−6)  ⇒g^((3)) (−(1/2))=−60(−(1/2))^(−6)   ⇒g(x)=(−(1/2))^(−3) −3(−(1/2))^(−4) (x+(1/2))+6(−(1/2))^(−5) (x+(1/2))^2   −10 (−(1/2))^(−6) (x+(1/2))^3  +(((x+(1/2))^4 )/(4!))ξ(x)  =−2^3  −3 .2^4 (x+(1/2))−6 .2^5 (x+(1/2))^2  −10.2^6 (x+(1/2))^3   +(((x+(1/2))^4 )/(4!))ξ(x) ⇒  ((g(x))/((x+(1/2))^4 )) =−(2^3 /((x+(1/2))^4 ))−((3.2^4 )/((x+(1/2))^3 ))−((6.2^5 )/((x+(1/2))^2 ))−((10.2^6 )/((x+(1/2)))) +..⇒  ⇒b_1 =−10.2^6  ,b_2 =−6.2^5  , b_3 =−3.2^4  , b_4 =−2^3  ⇒  2^4  F(x) =((10.2^6 )/x) −((4.2^5 )/x^2 ) +(2^4 /x^3 ) −((10.2^6 )/((x+(1/2)))) −((6.2^5 )/((x+(1/2))^2 ))−((3.2^4 )/((x+(1/2))^3 ))  −(2^3 /((x+(1/2))^4 )) ⇒  F(x) =((10.2^2 )/x)−((4.2)/x^2 ) +(1/x^3 ) −((10.2^2 )/((x+(1/2))))−((6.2)/((x+(1/2))^2 ))−(3/((x+(1/2))^3 ))  −(2^(−1) /((x+(1/2))^4 ))  now its eazy to find ∫_1 ^(+∞)  F(x)dx...
thankyousirmjs2)letdecomposeF(x)=1x3(2x+1)424F(x)=1x3(x+12)4=i=13aixi+i=14bi(x+12)iai?wefindD2(0)forf(x)=(x+12)4f(x)=f(0)+x1!f(0)+x22!f(2)(0)+x33!ξ(x)f(0)=124,f(x)=4(x+12)5f(0)=425f(2)(x)=20(x+12)6f(2)(0)=2026f(x)=244.25x+10.26x2+x33!ξ(x)f(x)x3=24x34.25x2+10.26x+13!ξ(x)a1=10.26a2=4.25anda3=24letfindbiwedetermineD3(12)forg(x)=x3g(x)=g(12)+x+121!g(12)+(x+12)22!g(2)(12)+(x+12)33!g(3)(12)+(x+12)44!ξ(x)g(12)=(12)3,g(x)=3x4g(12)=3(12)4g(2)(x)=12x5g(2)(12)=12(12)5g(3)(x)=60x6g(3)(12)=60(12)6g(x)=(12)33(12)4(x+12)+6(12)5(x+12)210(12)6(x+12)3+(x+12)44!ξ(x)=233.24(x+12)6.25(x+12)210.26(x+12)3+(x+12)44!ξ(x)g(x)(x+12)4=23(x+12)43.24(x+12)36.25(x+12)210.26(x+12)+..b1=10.26,b2=6.25,b3=3.24,b4=2324F(x)=10.26x4.25x2+24x310.26(x+12)6.25(x+12)23.24(x+12)323(x+12)4F(x)=10.22x4.2x2+1x310.22(x+12)6.2(x+12)23(x+12)321(x+12)4nowitseazytofind1+F(x)dx

Leave a Reply

Your email address will not be published. Required fields are marked *