Menu Close

calculate-1-dx-x-4-x-2-




Question Number 64390 by mathmax by abdo last updated on 17/Jul/19
calculate ∫_1 ^(+∞)   (dx/(x(√(4+x^2 ))))
calculate1+dxx4+x2
Commented by mathmax by abdo last updated on 18/Jul/19
let I =∫_1 ^(+∞)   (dx/(x(√(4+x^2 ))))  changement  x= 2tanθ  give  I =∫_(arctan((1/2))) ^(π/2)   ((2(1+tan^2 θ)dθ)/(2tanθ×2(√(1+tan^2 θ))))  =(1/2) ∫_(arctan((1/2))) ^(π/2)   ((√(1+tan^2 θ))/(tanθ))dθ =(1/2) ∫_(arctan((1/2))) ^(π/2)  (1/(cosθ ((sinθ)/(cosθ))))dθ  =(1/2) ∫_(arctan((1/2))) ^(π/2)  (dθ/(sinθ)) =_(tan((θ/2))=u)    (1/2) ∫_(tan((1/2)arctan((1/2)))) ^1   ((2du)/((1+u^2 )((2u)/(1+u^2 ))))  = ∫_λ ^1   (du/(2u)) =(1/2)ln∣u∣]_λ ^1  =−(1/2)lnλ =−(1/2)ln(tan((1/2)arctan((1/2)))
letI=1+dxx4+x2changementx=2tanθgiveI=arctan(12)π22(1+tan2θ)dθ2tanθ×21+tan2θ=12arctan(12)π21+tan2θtanθdθ=12arctan(12)π21cosθsinθcosθdθ=12arctan(12)π2dθsinθ=tan(θ2)=u12tan(12arctan(12))12du(1+u2)2u1+u2=λ1du2u=12lnu]λ1=12lnλ=12ln(tan(12arctan(12))
Commented by mathmax by abdo last updated on 18/Jul/19
another way  we use the changement x =2sh(t) ⇒  A =∫_(argsh((1/2))) ^(+∞)   ((2ch(t)dt)/(2sh(t)2 ch(t))) =(1/2) ∫_(ln((1/2)+(√(1+(1/4))))) ^(+∞)  (dt/((e^t −e^(−t) )/2))  =∫_(ln((1/2)+((√5)/2))) ^(+∞)    (dt/(e^t −e^(−t) )) =_(e^t =u)    ∫_((1+(√5))/2) ^(+∞)     (du/(u(u−(1/u))))  =∫_((1+(√5))/2) ^(+∞)    (du/(u^2 −1)) =(1/2) ∫_((1+(√5))/2) ^(+∞) {(1/(u−1)) −(1/(u+1))}du  =(1/2)[ln∣((u−1)/(u+1))∣]_((1+(√5))/2) ^(+∞)  =(1/2){ −ln∣((((1+(√5))/2)−1)/(((1+(√5))/2)+1))∣}  =−(1/2)ln∣(((√5)−1)/( (√5)+3))∣ =(1/2)ln((((√5)+3)/( (√5)−1))) .
anotherwayweusethechangementx=2sh(t)A=argsh(12)+2ch(t)dt2sh(t)2ch(t)=12ln(12+1+14)+dtetet2=ln(12+52)+dtetet=et=u1+52+duu(u1u)=1+52+duu21=121+52+{1u11u+1}du=12[lnu1u+1]1+52+=12{ln1+5211+52+1}=12ln515+3=12ln(5+351).
Answered by Tanmay chaudhury last updated on 17/Jul/19
∫((xdx)/(x^2 (√(4+x^2 )) ))  t^2 =4+x^2    2tdt=2xdx  ∫((tdt)/((t^2 −4)t))  (1/4)∫(((t+2)−(t−2))/((t+2)(t−2)))dt  (1/4)[∫(dt/(t−2))−∫(dt/(t+2))]  (1/4)ln(((t−2)/(t+2)))+c  (1/4)ln((((√(4+x^2 )) −2)/( (√(4+x^2 )) +2)))+c  (1/4)∣ln((((√(4+x^2 )) −2)/( (√(4+x^2 )) +2)))∣_1 ^(+∞)   (1/4)∣ln(((1−(2/( (√(4+x^2 ))[)))/(1+(2/( (√(4+x^2 )) )))))∣_1 ^(+∞)   =(1/4)(ln(((1−0)/(1+0)))−ln((((√5) −2)/( (√5) +2))))  =−(1/4)×ln((((√5) −2)/( (√5) +2)))
xdxx24+x2t2=4+x22tdt=2xdxtdt(t24)t14(t+2)(t2)(t+2)(t2)dt14[dtt2dtt+2]14ln(t2t+2)+c14ln(4+x224+x2+2)+c14ln(4+x224+x2+2)1+14ln(124+x2[1+24+x2)1+=14(ln(101+0)ln(525+2))=14×ln(525+2)

Leave a Reply

Your email address will not be published. Required fields are marked *