calculate-1-dx-x-4-x-2- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 64390 by mathmax by abdo last updated on 17/Jul/19 calculate∫1+∞dxx4+x2 Commented by mathmax by abdo last updated on 18/Jul/19 letI=∫1+∞dxx4+x2changementx=2tanθgiveI=∫arctan(12)π22(1+tan2θ)dθ2tanθ×21+tan2θ=12∫arctan(12)π21+tan2θtanθdθ=12∫arctan(12)π21cosθsinθcosθdθ=12∫arctan(12)π2dθsinθ=tan(θ2)=u12∫tan(12arctan(12))12du(1+u2)2u1+u2=∫λ1du2u=12ln∣u∣]λ1=−12lnλ=−12ln(tan(12arctan(12)) Commented by mathmax by abdo last updated on 18/Jul/19 anotherwayweusethechangementx=2sh(t)⇒A=∫argsh(12)+∞2ch(t)dt2sh(t)2ch(t)=12∫ln(12+1+14)+∞dtet−e−t2=∫ln(12+52)+∞dtet−e−t=et=u∫1+52+∞duu(u−1u)=∫1+52+∞duu2−1=12∫1+52+∞{1u−1−1u+1}du=12[ln∣u−1u+1∣]1+52+∞=12{−ln∣1+52−11+52+1∣}=−12ln∣5−15+3∣=12ln(5+35−1). Answered by Tanmay chaudhury last updated on 17/Jul/19 ∫xdxx24+x2t2=4+x22tdt=2xdx∫tdt(t2−4)t14∫(t+2)−(t−2)(t+2)(t−2)dt14[∫dtt−2−∫dtt+2]14ln(t−2t+2)+c14ln(4+x2−24+x2+2)+c14∣ln(4+x2−24+x2+2)∣1+∞14∣ln(1−24+x2[1+24+x2)∣1+∞=14(ln(1−01+0)−ln(5−25+2))=−14×ln(5−25+2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-1-u-2-2-u-5-du-please-Next Next post: nice-calculus-evaluate-k-0-m-0-n-0-1-k-m-n- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.