Menu Close

calculate-1-e-1-ln-x-ln-1-x-dx-




Question Number 89891 by mathmax by abdo last updated on 19/Apr/20
calculate ∫_(1/e) ^1 ln(x)ln(1+x)dx
calculate1e1ln(x)ln(1+x)dx
Commented by mathmax by abdo last updated on 20/Apr/20
let take a try   I =∫_e^(−1)  ^e  ln(x)ln(1+x)dx  we have ln^′ (1+x)=Σ_(n=0) ^∞ (−1)^n  x^n  ⇒ln(1+x)=Σ_(n=0) ^∞  (−1)^n  (x^(n+1) /(n+1))  =Σ_(n=1) ^∞  (−1)^(n−1)  (x^n /n) ⇒I =∫_e^−  ^e  ln(x)(Σ_(n=1) ^∞  (−1)^(n−1)  (x^n /n))dx  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) ∫_e^(−1)  ^e x^n  ln(x)dx  A_n =∫_e^(−1)  ^e  x^n ln(x)dx =_(bypsrts)    [(x^(n+1) /(n+1))ln(x)]_e^(−1)  ^e −∫_e^(−1)  ^e (x^n /(n+1))dx  =(1/((n+1))){e^(n+1)  +(e^(−1) )^(n+1) }−(1/((n+1)))[(1/(n+1))x^(n+1) ]_e^(−1)  ^e   =(e^(n+1) /((n+1))) +(e^(−n−1) /(n+1))−(1/((n+1)^2 ))(e^(n+1)  −e^(−n−1) ) ⇒  I =Σ_(n=1) ^∞  (((−1)^(n−1)  e^(n+1) )/(n(n+1))) +Σ_(n=1) ^∞  (((−1)^(n−1) e^(−n−1) )/(n(n+1)))  −Σ_(n=1) ^∞  (((−1)^(n−1) )/(n(n+1)^2 ))e^(n+1) −Σ_(n=1) ^∞  (((−1)^(n−1) )/(n(n+1)^2 ))e^(−n−1)    we have  Σ_(n=1) ^∞  (((−1)^(n−1) )/(n(n+1)))e^(n+1)  =Σ_(n=1) ^∞ ((1/n)−(1/(n+1)))(−1)^(n−1)  e^(n+1)   =eΣ_(n=1) ^∞  (((−1)^(n−1) )/n) e^n  −Σ_(n=1) ^∞ (((−1)^(n−1) )/(n+1))e^(n+1)   =eln(1+e)+Σ_(n=2) ^∞  (((−1)^(n−1) )/n)e^n   =eln(1+e)+ln(1+e) =(1+e)ln(1+e)  let decompose F(x)=(1/(x(x+1)^2 )) =(a/x)+(b/(x+1)) +(c/((x+1)^2 ))  c=−1  lim_(x→+∞) xF(x)=0=a+b ⇒b=−a ⇒  F(x)=(a/x)−(a/(x+1))−(1/((x+1)^2 ))  F(1)=(1/4) =a−(a/2)−(1/4) =(a/2)−(1/4) ⇒(1/2)=(a/2) ⇒a=1 ⇒  F(x)=(1/x)−(1/(x+1))−(1/((x+1)^2 )) ⇒  Σ_(n=1) ^∞  (((−1)^(n−1) )/(n(n+1)^2 )) e^(n+1)  =Σ_(n=1) ^∞ (−1)^(n−1) ((1/n)−(1/(n+1))−(1/((n+1)^2 )))e^(n+1)   =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) e^(n+1) −Σ_(n=1) ^∞  (((−1)^(n−1) )/(n+1)) e^(n+1)  −Σ_(n=1) ^∞  (((−1)^(n−1) )/((n+1)^2 ))e^(n+1)   ...be continued...
lettakeatryI=e1eln(x)ln(1+x)dxwehaveln(1+x)=n=0(1)nxnln(1+x)=n=0(1)nxn+1n+1=n=1(1)n1xnnI=eeln(x)(n=1(1)n1xnn)dx=n=1(1)n1ne1exnln(x)dxAn=e1exnln(x)dx=bypsrts[xn+1n+1ln(x)]e1ee1exnn+1dx=1(n+1){en+1+(e1)n+1}1(n+1)[1n+1xn+1]e1e=en+1(n+1)+en1n+11(n+1)2(en+1en1)I=n=1(1)n1en+1n(n+1)+n=1(1)n1en1n(n+1)n=1(1)n1n(n+1)2en+1n=1(1)n1n(n+1)2en1wehaven=1(1)n1n(n+1)en+1=n=1(1n1n+1)(1)n1en+1=en=1(1)n1nenn=1(1)n1n+1en+1=eln(1+e)+n=2(1)n1nen=eln(1+e)+ln(1+e)=(1+e)ln(1+e)letdecomposeF(x)=1x(x+1)2=ax+bx+1+c(x+1)2c=1limx+xF(x)=0=a+bb=aF(x)=axax+11(x+1)2F(1)=14=aa214=a21412=a2a=1F(x)=1x1x+11(x+1)2n=1(1)n1n(n+1)2en+1=n=1(1)n1(1n1n+11(n+1)2)en+1=n=1(1)n1nen+1n=1(1)n1n+1en+1n=1(1)n1(n+1)2en+1becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *