calculate-1-e-1-ln-x-ln-1-x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 89891 by mathmax by abdo last updated on 19/Apr/20 calculate∫1e1ln(x)ln(1+x)dx Commented by mathmax by abdo last updated on 20/Apr/20 lettakeatryI=∫e−1eln(x)ln(1+x)dxwehaveln′(1+x)=∑n=0∞(−1)nxn⇒ln(1+x)=∑n=0∞(−1)nxn+1n+1=∑n=1∞(−1)n−1xnn⇒I=∫e−eln(x)(∑n=1∞(−1)n−1xnn)dx=∑n=1∞(−1)n−1n∫e−1exnln(x)dxAn=∫e−1exnln(x)dx=bypsrts[xn+1n+1ln(x)]e−1e−∫e−1exnn+1dx=1(n+1){en+1+(e−1)n+1}−1(n+1)[1n+1xn+1]e−1e=en+1(n+1)+e−n−1n+1−1(n+1)2(en+1−e−n−1)⇒I=∑n=1∞(−1)n−1en+1n(n+1)+∑n=1∞(−1)n−1e−n−1n(n+1)−∑n=1∞(−1)n−1n(n+1)2en+1−∑n=1∞(−1)n−1n(n+1)2e−n−1wehave∑n=1∞(−1)n−1n(n+1)en+1=∑n=1∞(1n−1n+1)(−1)n−1en+1=e∑n=1∞(−1)n−1nen−∑n=1∞(−1)n−1n+1en+1=eln(1+e)+∑n=2∞(−1)n−1nen=eln(1+e)+ln(1+e)=(1+e)ln(1+e)letdecomposeF(x)=1x(x+1)2=ax+bx+1+c(x+1)2c=−1limx→+∞xF(x)=0=a+b⇒b=−a⇒F(x)=ax−ax+1−1(x+1)2F(1)=14=a−a2−14=a2−14⇒12=a2⇒a=1⇒F(x)=1x−1x+1−1(x+1)2⇒∑n=1∞(−1)n−1n(n+1)2en+1=∑n=1∞(−1)n−1(1n−1n+1−1(n+1)2)en+1=∑n=1∞(−1)n−1nen+1−∑n=1∞(−1)n−1n+1en+1−∑n=1∞(−1)n−1(n+1)2en+1…becontinued… Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: for-what-value-of-y-will-x-2-4-6x-8-lies-between-a-positive-integer-Next Next post: simplify-t-26-3-3-5-1-3-26-3-3-5-1-3- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.