Menu Close

Calculate-1-lim-x-0-2e-x-x-1-1-x-2-1-x-2-lim-x-0-1-x-2-x-1-x-3-x-1-x-2-




Question Number 160569 by LEKOUMA last updated on 02/Dec/21
Calculate   1.  lim_(x→0) [2e^(x/(x+1)) −1]^((x^2 +1)/x)   2. lim_(x→0) (((1+x×2^x )/(1+x×3^x )))^(1/x^2 )
Calculate1.limx0[2exx+11]x2+1x2.limx0(1+x×2x1+x×3x)1x2
Answered by qaz last updated on 02/Dec/21
(1)::lim_(x→0) [2e^(x/(x+1)) −1]^((x^2 +1)/x)   =lim_(x→0) [2(1+(x/(x+1))+o((x/(x+1))))−1]^((x^2 +1)/x)   =lim_(x→0) [(1+((2x)/(x+1))+o((x/(x+1))))^((x+1)/(2x)) ]^((2(x^2 +1))/(x+1))   =e^2   (2)::lim_(x→0) (((1+2^x x)/(1+3^x x)))^(1/x^2 )   =elim_(x→0) ((ln(1+2^x x)−ln(1+3^x x))/x^2 )  =elim_(x→0,ξ→1) (1/(ξx^2 ))[(1+2^x x)−(1+3^x x)]  =elim_(x→0) ((2^x −3^x )/x)  =elim_(x→0) (2^x ln2−3^x ln3)  =(2/3)
(1)::limx0[2exx+11]x2+1x=limx0[2(1+xx+1+o(xx+1))1]x2+1x=limx0[(1+2xx+1+o(xx+1))x+12x]2(x2+1)x+1=e2(2)::limx0(1+2xx1+3xx)1x2=elimx0ln(1+2xx)ln(1+3xx)x2=elimx0,ξ11ξx2[(1+2xx)(1+3xx)]=elimx02x3xx=elimx0(2xln23xln3)=23

Leave a Reply

Your email address will not be published. Required fields are marked *