Menu Close

calculate-1-x-2-2x-1-x-2-2x-dx-




Question Number 60687 by maxmathsup by imad last updated on 24/May/19
calculate  ∫ (((√(1+x^2 ))−2x)/( (√(1+x^2 )) +2x)) dx
calculate1+x22x1+x2+2xdx
Commented by maxmathsup by imad last updated on 25/May/19
let A =∫  (((√(1+x^2 ))−2x)/( (√(1+x^2 )) +2x)) dx  let use thechangement x =sh(t) ⇒  A =∫  ((ch(t)−2sh(t))/(ch(t)+2sh(t))) ch(t)dt = ∫   ((ch^2 t−sh(2t))/(ch(t)+2sh(t)))dt  =∫  ((((1+ch(2t))/2)−sh(2t))/(ch(t)+2sh(t))) dt =(1/2) ∫  ((1+ch(2t)−2sh(2t))/(ch(t)+2sh(t))) dt   2A =∫   ((1+((e^(2t)  +e^(−2t) )/2) −2((e^(2t) −e^(−2t) )/2))/(((e^t  +e^(−t) )/2) +2 ((e^t −e^(−t) )/2))) dt   = ∫  ((2 +e^(2t)  +e^(−2t)  −2 e^(2t)  +2e^(−2t) )/(e^t +e^(−t)  +2 e^t  −2e^(−t) )) dt =_(e^t  =u)     ∫   ((2 −u^2  +3u^(−2) )/(3u−u^(−1) )) du  =∫   ((2u^2 −u^4  +3)/(3u^3 −u)) du   =− ∫    ((u^4  −2u^2 −3)/(3u^3 −u)) du  let decompose   F(u) =((u^4 −2u^2 −3)/(3u^3 −u)) ⇒ F(u) =(1/3) ((3u^4 −6u^2 −9)/(3u^3 −u)) ⇒  F(u) =(1/3) {   ((3(u^3 −u )u −3u^2 −9)/(3u^3 −u))} =(1/3){ u −((3u^2 +9)/(3u^3 −u))}  =(u/3) −((u^2  +3)/(3u^3 −u))  and g(u) =((u^2  +3)/(3u^3 −u)) =((u^2  +3)/(u(3u^2 −1)))=((u^2  +3)/(3u(u−(1/( (√3))))(u+(1/( (√3))))))  =(a/u) +(b/(u−(1/( (√3))))) +(c/(u+(1/( (√3)))))  its eazh to find a ,b,c so  ∫ F(u)du =aln∣u∣+bln∣u−(1/( (√3)))∣+c ln∣u+(1/( (√3)))∣ +c ⇒  A =−(a/2)ln∣u∣ −bln∣u−(1/( (√3)))∣−c ln∣u+(1/( (√3)))∣ +c  u =e^t  and t =argsh(x) =ln(x+(√(1+x^2 ))) ⇒  u =x+(√(1+x^2 ))  ⇒  A =−(a/2)ln∣x+(√(1+x^2 ))∣ −bln∣x+(√(1+x^2 ))−(1/( (√3)))∣ −c ln∣x+(√(1+x^2 )) +(1/( (√3)))∣ +C .
letA=1+x22x1+x2+2xdxletusethechangementx=sh(t)A=ch(t)2sh(t)ch(t)+2sh(t)ch(t)dt=ch2tsh(2t)ch(t)+2sh(t)dt=1+ch(2t)2sh(2t)ch(t)+2sh(t)dt=121+ch(2t)2sh(2t)ch(t)+2sh(t)dt2A=1+e2t+e2t22e2te2t2et+et2+2etet2dt=2+e2t+e2t2e2t+2e2tet+et+2et2etdt=et=u2u2+3u23uu1du=2u2u4+33u3udu=u42u233u3uduletdecomposeF(u)=u42u233u3uF(u)=133u46u293u3uF(u)=13{3(u3u)u3u293u3u}=13{u3u2+93u3u}=u3u2+33u3uandg(u)=u2+33u3u=u2+3u(3u21)=u2+33u(u13)(u+13)=au+bu13+cu+13itseazhtofinda,b,csoF(u)du=alnu+blnu13+clnu+13+cA=a2lnublnu13clnu+13+cu=etandt=argsh(x)=ln(x+1+x2)u=x+1+x2A=a2lnx+1+x2blnx+1+x213clnx+1+x2+13+C.
Commented by aliesam last updated on 27/May/19
Answered by ajfour last updated on 24/May/19
x=cot θ  I=−∫ ((cosec θ−2cot θ)/(cosec θ+2cot θ)) cosec^2 θdθ    = −∫((1−2cos θ)/(sin^2 θ(1+2cos θ)))dθ     = −∫((2sin^2 (θ/2) (dθ/2)×2)/(8sin^2 (θ/2)cos^4 (θ/2)))   let (θ/2)= φ  I=−(1/2)∫sec^2 φsec^2 φdφ     =−(1/2){sec^2 φtan φ−∫2sec^2 φtan^2 φdφ}    =−(1/2)sec^2 φtan φ−2I−tan φ+c  I=−(1/6)sec^2 (θ/2)tan (θ/2)−(1/3)tan (θ/2)+c  let  tan (θ/2)=t   and since tan θ=x     ((2t)/(1−t^2 ))=x  ⇒  xt^2 +2t−x=0      t=((−2±(√(4+4x^2 )))/(2x)) = −(1/x)±((√(1+x^2 ))/x)  I=−(1/6)(1+t^2 )t−(t/3)+c .
x=cotθI=cosecθ2cotθcosecθ+2cotθcosec2θdθ=12cosθsin2θ(1+2cosθ)dθ=2sin2θ2dθ2×28sin2θ2cos4θ2letθ2=ϕI=12sec2ϕsec2ϕdϕ=12{sec2ϕtanϕ2sec2ϕtan2ϕdϕ}=12sec2ϕtanϕ2Itanϕ+cI=16sec2θ2tanθ213tanθ2+clettanθ2=tandsincetanθ=x2t1t2=xxt2+2tx=0t=2±4+4x22x=1x±1+x2xI=16(1+t2)tt3+c.

Leave a Reply

Your email address will not be published. Required fields are marked *