Question Number 60687 by maxmathsup by imad last updated on 24/May/19
$${calculate}\:\:\int\:\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−\mathrm{2}{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+\mathrm{2}{x}}\:{dx} \\ $$
Commented by maxmathsup by imad last updated on 25/May/19
$${let}\:{A}\:=\int\:\:\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−\mathrm{2}{x}}{\:\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+\mathrm{2}{x}}\:{dx}\:\:{let}\:{use}\:{thechangement}\:{x}\:={sh}\left({t}\right)\:\Rightarrow \\ $$$${A}\:=\int\:\:\frac{{ch}\left({t}\right)−\mathrm{2}{sh}\left({t}\right)}{{ch}\left({t}\right)+\mathrm{2}{sh}\left({t}\right)}\:{ch}\left({t}\right){dt}\:=\:\int\:\:\:\frac{{ch}^{\mathrm{2}} {t}−{sh}\left(\mathrm{2}{t}\right)}{{ch}\left({t}\right)+\mathrm{2}{sh}\left({t}\right)}{dt} \\ $$$$=\int\:\:\frac{\frac{\mathrm{1}+{ch}\left(\mathrm{2}{t}\right)}{\mathrm{2}}−{sh}\left(\mathrm{2}{t}\right)}{{ch}\left({t}\right)+\mathrm{2}{sh}\left({t}\right)}\:{dt}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\int\:\:\frac{\mathrm{1}+{ch}\left(\mathrm{2}{t}\right)−\mathrm{2}{sh}\left(\mathrm{2}{t}\right)}{{ch}\left({t}\right)+\mathrm{2}{sh}\left({t}\right)}\:{dt}\: \\ $$$$\mathrm{2}{A}\:=\int\:\:\:\frac{\mathrm{1}+\frac{{e}^{\mathrm{2}{t}} \:+{e}^{−\mathrm{2}{t}} }{\mathrm{2}}\:−\mathrm{2}\frac{{e}^{\mathrm{2}{t}} −{e}^{−\mathrm{2}{t}} }{\mathrm{2}}}{\frac{{e}^{{t}} \:+{e}^{−{t}} }{\mathrm{2}}\:+\mathrm{2}\:\frac{{e}^{{t}} −{e}^{−{t}} }{\mathrm{2}}}\:{dt}\: \\ $$$$=\:\int\:\:\frac{\mathrm{2}\:+{e}^{\mathrm{2}{t}} \:+{e}^{−\mathrm{2}{t}} \:−\mathrm{2}\:{e}^{\mathrm{2}{t}} \:+\mathrm{2}{e}^{−\mathrm{2}{t}} }{{e}^{{t}} +{e}^{−{t}} \:+\mathrm{2}\:{e}^{{t}} \:−\mathrm{2}{e}^{−{t}} }\:{dt}\:=_{{e}^{{t}} \:={u}} \:\:\:\:\int\:\:\:\frac{\mathrm{2}\:−{u}^{\mathrm{2}} \:+\mathrm{3}{u}^{−\mathrm{2}} }{\mathrm{3}{u}−{u}^{−\mathrm{1}} }\:{du} \\ $$$$=\int\:\:\:\frac{\mathrm{2}{u}^{\mathrm{2}} −{u}^{\mathrm{4}} \:+\mathrm{3}}{\mathrm{3}{u}^{\mathrm{3}} −{u}}\:{du}\:\:\:=−\:\int\:\:\:\:\frac{{u}^{\mathrm{4}} \:−\mathrm{2}{u}^{\mathrm{2}} −\mathrm{3}}{\mathrm{3}{u}^{\mathrm{3}} −{u}}\:{du}\:\:{let}\:{decompose}\: \\ $$$${F}\left({u}\right)\:=\frac{{u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{2}} −\mathrm{3}}{\mathrm{3}{u}^{\mathrm{3}} −{u}}\:\Rightarrow\:{F}\left({u}\right)\:=\frac{\mathrm{1}}{\mathrm{3}}\:\frac{\mathrm{3}{u}^{\mathrm{4}} −\mathrm{6}{u}^{\mathrm{2}} −\mathrm{9}}{\mathrm{3}{u}^{\mathrm{3}} −{u}}\:\Rightarrow \\ $$$${F}\left({u}\right)\:=\frac{\mathrm{1}}{\mathrm{3}}\:\left\{\:\:\:\frac{\mathrm{3}\left({u}^{\mathrm{3}} −{u}\:\right){u}\:−\mathrm{3}{u}^{\mathrm{2}} −\mathrm{9}}{\mathrm{3}{u}^{\mathrm{3}} −{u}}\right\}\:=\frac{\mathrm{1}}{\mathrm{3}}\left\{\:{u}\:−\frac{\mathrm{3}{u}^{\mathrm{2}} +\mathrm{9}}{\mathrm{3}{u}^{\mathrm{3}} −{u}}\right\} \\ $$$$=\frac{{u}}{\mathrm{3}}\:−\frac{{u}^{\mathrm{2}} \:+\mathrm{3}}{\mathrm{3}{u}^{\mathrm{3}} −{u}}\:\:{and}\:{g}\left({u}\right)\:=\frac{{u}^{\mathrm{2}} \:+\mathrm{3}}{\mathrm{3}{u}^{\mathrm{3}} −{u}}\:=\frac{{u}^{\mathrm{2}} \:+\mathrm{3}}{{u}\left(\mathrm{3}{u}^{\mathrm{2}} −\mathrm{1}\right)}=\frac{{u}^{\mathrm{2}} \:+\mathrm{3}}{\mathrm{3}{u}\left({u}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)\left({u}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\right)} \\ $$$$=\frac{{a}}{{u}}\:+\frac{{b}}{{u}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\:+\frac{{c}}{{u}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}}\:\:{its}\:{eazh}\:{to}\:{find}\:{a}\:,{b},{c}\:{so} \\ $$$$\int\:{F}\left({u}\right){du}\:={aln}\mid{u}\mid+{bln}\mid{u}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mid+{c}\:{ln}\mid{u}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mid\:+{c}\:\Rightarrow \\ $$$${A}\:=−\frac{{a}}{\mathrm{2}}{ln}\mid{u}\mid\:−{bln}\mid{u}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mid−{c}\:{ln}\mid{u}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mid\:+{c} \\ $$$${u}\:={e}^{{t}} \:{and}\:{t}\:={argsh}\left({x}\right)\:={ln}\left({x}+\sqrt{\left.\mathrm{1}+{x}^{\mathrm{2}} \right)}\:\Rightarrow\right. \\ $$$${u}\:={x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:\:\Rightarrow \\ $$$${A}\:=−\frac{{a}}{\mathrm{2}}{ln}\mid{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\mid\:−{bln}\mid{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }−\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mid\:−{c}\:{ln}\mid{x}+\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }\:+\frac{\mathrm{1}}{\:\sqrt{\mathrm{3}}}\mid\:+{C}\:. \\ $$
Commented by aliesam last updated on 27/May/19
Answered by ajfour last updated on 24/May/19
$${x}=\mathrm{cot}\:\theta \\ $$$${I}=−\int\:\frac{\mathrm{cosec}\:\theta−\mathrm{2cot}\:\theta}{\mathrm{cosec}\:\theta+\mathrm{2cot}\:\theta}\:\mathrm{cosec}\:^{\mathrm{2}} \theta{d}\theta \\ $$$$\:\:=\:−\int\frac{\mathrm{1}−\mathrm{2cos}\:\theta}{\mathrm{sin}\:^{\mathrm{2}} \theta\left(\mathrm{1}+\mathrm{2cos}\:\theta\right)}{d}\theta \\ $$$$\:\:\:=\:−\int\frac{\mathrm{2sin}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\:\frac{{d}\theta}{\mathrm{2}}×\mathrm{2}}{\mathrm{8sin}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\mathrm{cos}\:^{\mathrm{4}} \frac{\theta}{\mathrm{2}}} \\ $$$$\:{let}\:\frac{\theta}{\mathrm{2}}=\:\phi \\ $$$${I}=−\frac{\mathrm{1}}{\mathrm{2}}\int\mathrm{sec}\:^{\mathrm{2}} \phi\mathrm{sec}\:^{\mathrm{2}} \phi{d}\phi \\ $$$$\:\:\:=−\frac{\mathrm{1}}{\mathrm{2}}\left\{\mathrm{sec}\:^{\mathrm{2}} \phi\mathrm{tan}\:\phi−\int\mathrm{2sec}\:^{\mathrm{2}} \phi\mathrm{tan}\:^{\mathrm{2}} \phi{d}\phi\right\} \\ $$$$\:\:=−\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sec}\:^{\mathrm{2}} \phi\mathrm{tan}\:\phi−\mathrm{2}{I}−\mathrm{tan}\:\phi+{c} \\ $$$${I}=−\frac{\mathrm{1}}{\mathrm{6}}\mathrm{sec}\:^{\mathrm{2}} \frac{\theta}{\mathrm{2}}\mathrm{tan}\:\frac{\theta}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{3}}\mathrm{tan}\:\frac{\theta}{\mathrm{2}}+{c} \\ $$$${let}\:\:\mathrm{tan}\:\frac{\theta}{\mathrm{2}}={t}\:\:\:{and}\:{since}\:\mathrm{tan}\:\theta={x} \\ $$$$\:\:\:\frac{\mathrm{2}{t}}{\mathrm{1}−{t}^{\mathrm{2}} }={x}\:\:\Rightarrow\:\:{xt}^{\mathrm{2}} +\mathrm{2}{t}−{x}=\mathrm{0} \\ $$$$\:\:\:\:{t}=\frac{−\mathrm{2}\pm\sqrt{\mathrm{4}+\mathrm{4}{x}^{\mathrm{2}} }}{\mathrm{2}{x}}\:=\:−\frac{\mathrm{1}}{{x}}\pm\frac{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}{{x}} \\ $$$${I}=−\frac{\mathrm{1}}{\mathrm{6}}\left(\mathrm{1}+{t}^{\mathrm{2}} \right){t}−\frac{{t}}{\mathrm{3}}+{c}\:. \\ $$