calculate-1-x-2-2x-1-x-2-2x-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 60687 by maxmathsup by imad last updated on 24/May/19 calculate∫1+x2−2x1+x2+2xdx Commented by maxmathsup by imad last updated on 25/May/19 letA=∫1+x2−2x1+x2+2xdxletusethechangementx=sh(t)⇒A=∫ch(t)−2sh(t)ch(t)+2sh(t)ch(t)dt=∫ch2t−sh(2t)ch(t)+2sh(t)dt=∫1+ch(2t)2−sh(2t)ch(t)+2sh(t)dt=12∫1+ch(2t)−2sh(2t)ch(t)+2sh(t)dt2A=∫1+e2t+e−2t2−2e2t−e−2t2et+e−t2+2et−e−t2dt=∫2+e2t+e−2t−2e2t+2e−2tet+e−t+2et−2e−tdt=et=u∫2−u2+3u−23u−u−1du=∫2u2−u4+33u3−udu=−∫u4−2u2−33u3−uduletdecomposeF(u)=u4−2u2−33u3−u⇒F(u)=133u4−6u2−93u3−u⇒F(u)=13{3(u3−u)u−3u2−93u3−u}=13{u−3u2+93u3−u}=u3−u2+33u3−uandg(u)=u2+33u3−u=u2+3u(3u2−1)=u2+33u(u−13)(u+13)=au+bu−13+cu+13itseazhtofinda,b,cso∫F(u)du=aln∣u∣+bln∣u−13∣+cln∣u+13∣+c⇒A=−a2ln∣u∣−bln∣u−13∣−cln∣u+13∣+cu=etandt=argsh(x)=ln(x+1+x2)⇒u=x+1+x2⇒A=−a2ln∣x+1+x2∣−bln∣x+1+x2−13∣−cln∣x+1+x2+13∣+C. Commented by aliesam last updated on 27/May/19 Answered by ajfour last updated on 24/May/19 x=cotθI=−∫cosecθ−2cotθcosecθ+2cotθcosec2θdθ=−∫1−2cosθsin2θ(1+2cosθ)dθ=−∫2sin2θ2dθ2×28sin2θ2cos4θ2letθ2=ϕI=−12∫sec2ϕsec2ϕdϕ=−12{sec2ϕtanϕ−∫2sec2ϕtan2ϕdϕ}=−12sec2ϕtanϕ−2I−tanϕ+cI=−16sec2θ2tanθ2−13tanθ2+clettanθ2=tandsincetanθ=x2t1−t2=x⇒xt2+2t−x=0t=−2±4+4x22x=−1x±1+x2xI=−16(1+t2)t−t3+c. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: dy-dx-x-2-y-x-3-y-3-0-Next Next post: find-e-x-3-x-3-x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.