Menu Close

calculate-1-x-cosx-i-1-n-1-tan-2-x-2-i-dx-




Question Number 65092 by mathmax by abdo last updated on 25/Jul/19
calculate  ∫  (1/(x cosx))Π_(i=1) ^n (1−tan^2 ((x/2^i )))dx
calculate1xcosxi=1n(1tan2(x2i))dx
Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19
let call it F_n (x).And  P_n (x)=Π_(i=1) ^n (1−tan^2 ((x/2^i )))  we know that ∀ i=1.....n   1−tan^2 ((x/2^i ))=((2tan((x/2^i )))/(tan(2.(x/2^i ))))  so  P_n (x)=2_ ^n  Π_(i=1) ^n  (((tan((x/2^i )))/(tan((x/2^(i−1) )))))=((2^n tan((x/2^n )))/(tanx))  then   F_n (x)=∫ (((2^(n ) tan((x/2^n )))/(xsinx)))dx  =? ( i am trying.....  But  F_∞ (x)=∫(1/(xcosx))P_∞ (x)dx   is solvable with P_∞ (x)=lim_∞  P_n (x)=(x/(tanx))  then  F_∞ (x)=∫  (1/(xcosx)).(x/(tanx))dx=∫ (1/(sinx))dx=∫ ((cos^2 ((x/2))+sin^2 ((x/2)))/(2sin((x/2))cos((x/2)))) dx           =∫  (((1/2)cos((x/2)))/(sin((x/2)))) + (((1/2)sin((x/2)))/(cos((x/2)))) dx=ln∣tan((x/2))∣ +c       c∈R
letcallitFn(x).AndPn(x)=ni=1(1tan2(x2i))weknowthati=1..n1tan2(x2i)=2tan(x2i)tan(2.x2i)soPn(x)=2nni=1(tan(x2i)tan(x2i1))=2ntan(x2n)tanxthenFn(x)=(2ntan(x2n)xsinx)dx=?(iamtrying..ButF(x)=1xcosxP(x)dxissolvablewithP(x)=limPn(x)=xtanxthenF(x)=1xcosx.xtanxdx=1sinxdx=cos2(x2)+sin2(x2)2sin(x2)cos(x2)dx=12cos(x2)sin(x2)+12sin(x2)cos(x2)dx=lntan(x2)+ccR
Commented by Prithwish sen last updated on 25/Jul/19
From  P_n (x) =((2^n tan((x/2^n )))/(tanx)) = ((2^n sin(x/2^n ))/(cos(x/2^n )tanx)) = (1/(cos(x/2^n )))Π_(k=1) ^n (1/(cos(x/2^k )))  Now if n→∞  we know x𝚷_(k=1) ^∞ cos(x/2^k ) = sinx  i.e P_n (x) = (x/(sinx)) as n→∞  ∴ the integral becomes 2∫(dx/(sin2x))= 2ln∣tanx∣+C  Sir please check.
FromPn(x)=2ntan(x2n)tanx=2nsinx2ncosx2ntanx=1cosx2nnk=11cosx2kNowifnweknowxcosk=1x2k=sinxi.ePn(x)=xsinxasntheintegralbecomes2dxsin2x=2lntanx+CSirpleasecheck.

Leave a Reply

Your email address will not be published. Required fields are marked *