calculate-1-x-cosx-i-1-n-1-tan-2-x-2-i-dx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 65092 by mathmax by abdo last updated on 25/Jul/19 calculate∫1xcosx∏i=1n(1−tan2(x2i))dx Commented by ~ À ® @ 237 ~ last updated on 25/Jul/19 letcallitFn(x).AndPn(x)=∏ni=1(1−tan2(x2i))weknowthat∀i=1…..n1−tan2(x2i)=2tan(x2i)tan(2.x2i)soPn(x)=2n∏ni=1(tan(x2i)tan(x2i−1))=2ntan(x2n)tanxthenFn(x)=∫(2ntan(x2n)xsinx)dx=?(iamtrying…..ButF∞(x)=∫1xcosxP∞(x)dxissolvablewithP∞(x)=lim∞Pn(x)=xtanxthenF∞(x)=∫1xcosx.xtanxdx=∫1sinxdx=∫cos2(x2)+sin2(x2)2sin(x2)cos(x2)dx=∫12cos(x2)sin(x2)+12sin(x2)cos(x2)dx=ln∣tan(x2)∣+cc∈R Commented by Prithwish sen last updated on 25/Jul/19 FromPn(x)=2ntan(x2n)tanx=2nsinx2ncosx2ntanx=1cosx2n∏nk=11cosx2kNowifn→∞weknowx∏∞cosk=1x2k=sinxi.ePn(x)=xsinxasn→∞∴theintegralbecomes2∫dxsin2x=2ln∣tanx∣+CSirpleasecheck. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-65087Next Next post: y-sgn-x-y- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.