Menu Close

Calculate-19-93-mod-81-




Question Number 13584 by Tinkutara last updated on 21/May/17
Calculate 19^(93)  (mod 81).
Calculate1993(mod81).
Commented by RasheedSindhi last updated on 22/May/17
Using  (1+x)^n ≡1+nx(mod y)       (Mentioned by tinkutara elsewhere.)  (1+18)^(93) ≡1+18×93(mod 81)                       ≡1675(mod 81)                       ≡20×81+55(mod 81)                       ≡55(mod 81)
Using(1+x)n1+nx(mody)(Mentionedbytinkutaraelsewhere.)(1+18)931+18×93(mod81)1675(mod81)20×81+55(mod81)55(mod81)
Commented by Tinkutara last updated on 22/May/17
But it was my doubt, is it true in all  cases even when x and y have no  common factor?
Butitwasmydoubt,isittrueinallcasesevenwhenxandyhavenocommonfactor?
Commented by RasheedSindhi last updated on 22/May/17
I think it′s not general:  (1+15)^2 ≡1+2×15(mod 7)                      ≡31(mod 7)                      ≡3(mod 7)  But   256=7×36+4  Here 15 and 7 are coprime and  formula doesn′t work.
Ithinkitsnotgeneral:(1+15)21+2×15(mod7)31(mod7)3(mod7)But256=7×36+4Here15and7arecoprimeandformuladoesntwork.
Commented by Tinkutara last updated on 22/May/17
Then where it can be applied?
Thenwhereitcanbeapplied?
Commented by mrW1 last updated on 22/May/17
if x^2  mod y =0 then always  (1+x)^n  mod y = (1+nx) mod y
ifx2mody=0thenalways(1+x)nmody=(1+nx)mody
Commented by Tinkutara last updated on 22/May/17
But you have calculated 13^(99)  mod 81  ≡ 55 mod 81.  13^(99)  mod 81 = (1 + 12)^(99)  mod 81  ≡ (1 + 99×12) mod 81 ≡ 55 mod 81  But here 12^2  mod 81 = 144 mod 81 ≠ 0
Butyouhavecalculated1399mod8155mod81.1399mod81=(1+12)99mod81(1+99×12)mod8155mod81Buthere122mod81=144mod810
Commented by mrW1 last updated on 22/May/17
if x^2  mod y = 0 then   (1+x)^n  mod y = (1+nx) mod y  this is always true.    if x^2  mod y ≠ 0 and  x^3  mod y ≠ 0 but  x^4  mod y = 0,  then you should check the terms with  x^2  and x^3  separately. They may be also  divisible by y, but not always.
ifx2mody=0then(1+x)nmody=(1+nx)modythisisalwaystrue.ifx2mody0andx3mody0butx4mody=0,thenyoushouldcheckthetermswithx2andx3separately.Theymaybealsodivisiblebyy,butnotalways.
Commented by mrW1 last updated on 22/May/17
(1+x)^n =1+nx+((n(n−1)x^2 )/2)+((n(n−1)(n−2)x^3 )/6)+...  =A_0 +A_1 +A_2 +A_3 +...  For (1+x)^n  mod y = (1+nx) mod y  it means A_2  upwards is divisible by y.  The condition for this is  x^2  mod y =0  or   { ((((n(n−1)x^2 )/2) mod y =0)),(((n−2)x mod 3 =0)) :}    For example (1+12)^(99)  mod 162=?  x^2 =12^2 =144 mod 162 =144≠0  but ((99×98×12^2 )/2)=11×49×9×12^2   =11×49×8×162 mod 162=0  and   (99−2)×12=97×4×3 mod 3=0  ⇒(1+12)^(99)  mod 162 =(1+99×12) mod 162  =1189 mod 162 =55
(1+x)n=1+nx+n(n1)x22+n(n1)(n2)x36+=A0+A1+A2+A3+For(1+x)nmody=(1+nx)modyitmeansA2upwardsisdivisiblebyy.Theconditionforthisisx2mody=0or{n(n1)x22mody=0(n2)xmod3=0Forexample(1+12)99mod162=?x2=122=144mod162=1440but99×98×1222=11×49×9×122=11×49×8×162mod162=0and(992)×12=97×4×3mod3=0(1+12)99mod162=(1+99×12)mod162=1189mod162=55
Commented by Tinkutara last updated on 22/May/17
So it is better to expand using binomial  theorem.
Soitisbettertoexpandusingbinomialtheorem.
Commented by mrW1 last updated on 22/May/17
yes!
yes!
Answered by ajfour last updated on 21/May/17
19^(93) =(1+18)^(93)       =1+^(93) C_1 (18)+^(93) C_2 (18)^2 +...        ......+^(93) C_(92) (18)^(92) +^(93) C_(93) (18)^(93)     third term onwards each is  divisible by 81,  and 1+^(93) C_1 (18)=1+93×18                    = 1675 =81(20)+55  so   19^(93)  (mod 81) =55 .
1993=(1+18)93=1+93C1(18)+93C2(18)2++93C92(18)92+93C93(18)93thirdtermonwardseachisdivisibleby81,and1+93C1(18)=1+93×18=1675=81(20)+55so1993(mod81)=55.
Commented by Tinkutara last updated on 21/May/17
Thanks!
Thanks!
Answered by RasheedSoomro last updated on 05/Jun/17
^(Rasheed Sindhi)   Since (19,81)=1 Euler theorm can apply    Statement of Euler theorm:  •If (a,m)=1,then                      a^(φ(m)) ≡1(mod m)  •Here φ(m) is number of coprimes of m  which are not greater than m  •        If m=p_1 ^α_1  p_2 ^α_2  .....p_n ^α_n          then  φ(m)=m(1−(1/p_1 ))(1−(1/p_2 ))...(1−(1/p_n ))  So as 81=3^4          φ(81)=81(1−(1/3))=81×(2/3)=54  And hence                  19^(54) ≡1(mod 81).........(i)                   19^5 ≡10(mod 81)                  ( 19^5 )^8 ≡(10)^8 =100000000≡73(mod 81                      19^(40) ≡73(mod 81).........(ii)  (i)×(ii):  19^(54) ×19^(40) ≡1×73(mod 81)                        19^(94) ≡73+81×12=1045(mod 81)                        19^(94) /19≡1045/19(mod 81)                        19^(93) ≡55(mod 81)
RasheedSindhiSince(19,81)=1EulertheormcanapplyStatementofEulertheorm:If(a,m)=1,thenaϕ(m)1(modm)Hereϕ(m)isnumberofcoprimesofmwhicharenotgreaterthanmIfm=p1α1p2α2..pnαnthenϕ(m)=m(11p1)(11p2)(11pn)Soas81=34ϕ(81)=81(113)=81×23=54Andhence19541(mod81)(i)19510(mod81)(195)8(10)8=10000000073(mod81194073(mod81)(ii)(i)×(ii):1954×19401×73(mod81)199473+81×12=1045(mod81)1994/191045/19(mod81)199355(mod81)

Leave a Reply

Your email address will not be published. Required fields are marked *