Question Number 40128 by maxmathsup by imad last updated on 16/Jul/18
$${calculate}\:\:\:\int_{−\mathrm{2}} ^{−\mathrm{1}} \:\:\:\:\:\frac{{dt}}{{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }}\:. \\ $$
Commented by math khazana by abdo last updated on 21/Jul/18
$${I}\:\:\:=\:_{{t}=−{u}} \:\:\:\:−\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\:\frac{−{du}}{−{u}\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:=−\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\frac{{du}}{{u}\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }} \\ $$$${changement}\:{u}\:={sh}\left({x}\right)\:{give} \\ $$$$\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\:\:\frac{{du}}{{u}\sqrt{\mathrm{1}+{u}^{\mathrm{2}} }}\:=\:\int_{{argsh}\left(\mathrm{1}\right)} ^{{argsh}\left(\mathrm{2}\right)} \:\:\:\:\frac{{ch}\left({x}\right){dx}}{{sh}\left({x}\right){chx}} \\ $$$$=\:\int_{{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} ^{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} \:\:\frac{{dx}}{{sh}\left({x}\right)}\:=\mathrm{2}\:\int_{{ln}\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)} ^{{ln}\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)} \:\:\:\:\frac{{dx}}{{e}^{{x}} \:−{e}^{−{x}} } \\ $$$$=_{{e}^{{x}} ={t}} \:\:\:\:\:\mathrm{2}\:\int_{\mathrm{1}+\sqrt{\mathrm{2}}} ^{\mathrm{2}+\sqrt{\mathrm{5}}} \:\:\:\:\:\frac{\mathrm{1}}{{t}−\frac{\mathrm{1}}{{t}}}\:\frac{{dt}}{{t}} \\ $$$$=\mathrm{2}\:\int_{\mathrm{1}+\sqrt{\mathrm{2}}} ^{\mathrm{2}+\sqrt{\mathrm{5}}} \:\:\:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} −\mathrm{1}}\:=\:\int_{\mathrm{1}+\sqrt{\mathrm{2}}} ^{\mathrm{2}+\sqrt{\mathrm{5}}} \:\left\{\:\frac{\mathrm{1}}{{t}−\mathrm{1}}\:−\frac{\mathrm{1}}{{t}+\mathrm{1}}\right\}{dt} \\ $$$$=\left[{ln}\mid\frac{{t}−\mathrm{1}}{{t}+\mathrm{1}}\mid\right]_{\mathrm{1}+\sqrt{\mathrm{2}}} ^{\mathrm{2}+\sqrt{\mathrm{5}}} \\ $$$$={ln}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{3}+\sqrt{\mathrm{5}}}\right)\:−{ln}\left(\:\frac{\sqrt{\mathrm{2}}}{\mathrm{2}+\sqrt{\mathrm{2}}}\right)\:\:\Rightarrow \\ $$$${I}\:={ln}\left(\frac{\sqrt{\mathrm{2}}}{\mathrm{2}+\sqrt{\mathrm{2}}}\right)−{ln}\left(\frac{\mathrm{1}+\sqrt{\mathrm{5}}}{\mathrm{3}+\sqrt{\mathrm{5}}}\right)\:. \\ $$