Menu Close

calculate-2-1-dt-t-1-t-2-




Question Number 40128 by maxmathsup by imad last updated on 16/Jul/18
calculate   ∫_(−2) ^(−1)      (dt/(t(√(1+t^2 )))) .
calculate21dtt1+t2.
Commented by math khazana by abdo last updated on 21/Jul/18
I   = _(t=−u)     −∫_1 ^2     ((−du)/(−u(√(1+u^2 )))) =−∫_1 ^2    (du/(u(√(1+u^2 ))))  changement u =sh(x) give  ∫_1 ^2      (du/(u(√(1+u^2 )))) = ∫_(argsh(1)) ^(argsh(2))     ((ch(x)dx)/(sh(x)chx))  = ∫_(ln(1+(√2))) ^(ln(2+(√5)))   (dx/(sh(x))) =2 ∫_(ln(1+(√2))) ^(ln(2+(√5)))     (dx/(e^x  −e^(−x) ))  =_(e^x =t)      2 ∫_(1+(√2)) ^(2+(√5))      (1/(t−(1/t))) (dt/t)  =2 ∫_(1+(√2)) ^(2+(√5))       (dt/(t^2 −1)) = ∫_(1+(√2)) ^(2+(√5))  { (1/(t−1)) −(1/(t+1))}dt  =[ln∣((t−1)/(t+1))∣]_(1+(√2)) ^(2+(√5))   =ln(((1+(√5))/(3+(√5)))) −ln( ((√2)/(2+(√2))))  ⇒  I =ln(((√2)/(2+(√2))))−ln(((1+(√5))/(3+(√5)))) .
I=t=u12duu1+u2=12duu1+u2changementu=sh(x)give12duu1+u2=argsh(1)argsh(2)ch(x)dxsh(x)chx=ln(1+2)ln(2+5)dxsh(x)=2ln(1+2)ln(2+5)dxexex=ex=t21+22+51t1tdtt=21+22+5dtt21=1+22+5{1t11t+1}dt=[lnt1t+1]1+22+5=ln(1+53+5)ln(22+2)I=ln(22+2)ln(1+53+5).

Leave a Reply

Your email address will not be published. Required fields are marked *