Menu Close

calculate-2-2x-3-x-1-3-x-2-x-1-2-dx-




Question Number 81433 by abdomathmax last updated on 13/Feb/20
calculate ∫_2 ^(+∞)      ((2x+3)/((x−1)^3 (x^2 +x+1)^2 ))dx
calculate2+2x+3(x1)3(x2+x+1)2dx
Answered by MJS last updated on 13/Feb/20
∫((2x+3)/((x−1)^2 (x^2 +x+1)^2 ))=       Q_1 (x)=Q_2 (x)=(x−1)(x^2 +x+1)       P_1 (x)=−(2/3)x^2 −x       P_2 (x)=−(2/3)x−2  =−((x(2x+3))/(3(x−1)(x^2 +x+1)))−(2/3)∫((x+3)/((x−1)(x^2 +x+1)))dx=       ∫((x+3)/((x−1)(x^2 +x+1)))dx=(4/3)∫(dx/(x−1))−(1/3)∫((4x+5)/(x^2 +x+1))dx=       =(4/3)ln ∣x−1∣ −(2/3)ln (x^2 +x+1) −((2(√3))/3)arctan (((√3)(2x+1))/3) =       =(2/3)ln (((x−1)^2 )/(x^2 +x+1)) −((2(√3))/3)arctan (((√3)(2x+1))/3)  =−((x(2x+3))/(3(x−1)(x^2 +x+1)))−(4/9)ln (((x−1)^2 )/(x^2 +x+1)) +((4(√3))/9)arctan (((√3)(2x+1))/3) +C  ⇒  answer is ((2π(√3))/9)+(2/3)−(4/9)ln 7 −((4(√3))/9)arctan ((5(√3))/3)
2x+3(x1)2(x2+x+1)2=Q1(x)=Q2(x)=(x1)(x2+x+1)P1(x)=23x2xP2(x)=23x2=x(2x+3)3(x1)(x2+x+1)23x+3(x1)(x2+x+1)dx=x+3(x1)(x2+x+1)dx=43dxx1134x+5x2+x+1dx==43lnx123ln(x2+x+1)233arctan3(2x+1)3==23ln(x1)2x2+x+1233arctan3(2x+1)3=x(2x+3)3(x1)(x2+x+1)49ln(x1)2x2+x+1+439arctan3(2x+1)3+Cansweris2π39+2349ln7439arctan533
Commented by john santu last updated on 13/Feb/20
Ostrogradski method. i will learn  this method
Ostrogradskimethod.iwilllearnthismethod
Commented by abdomathmax last updated on 13/Feb/20
thank you sir mjs
thankyousirmjs

Leave a Reply

Your email address will not be published. Required fields are marked *