Question Number 36417 by abdo.msup.com last updated on 01/Jun/18
$${calculate}\:\int_{\mathrm{2}} ^{\mathrm{6}} \:\:\:\frac{{dx}}{\:\sqrt{{x}+\mathrm{1}}\:+\sqrt{{x}−\mathrm{1}}} \\ $$
Commented by abdo mathsup 649 cc last updated on 03/Jun/18
$${I}\:=\:\int_{\mathrm{2}} ^{\mathrm{6}} \:\:\:\frac{\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}−\mathrm{1}}}{\mathrm{2}}{dx}\:\Rightarrow \\ $$$$\mathrm{2}{I}\:=\:\int_{\mathrm{2}} ^{\mathrm{6}} \:\sqrt{{x}+\mathrm{1}}{dx}\:−\int_{\mathrm{2}} ^{\mathrm{6}} \:\sqrt{{x}−\mathrm{1}}{dx}\:\:{but}\:{changement} \\ $$$$\sqrt{{x}+\mathrm{1}}\:={t}\:{give}\:\int_{\mathrm{2}} ^{\mathrm{6}} \:\sqrt{{x}+\mathrm{1}}\:{dx}\:=\:\int_{\sqrt{\mathrm{3}}} ^{\sqrt{\mathrm{7}}} {t}\:\mathrm{2}{t}\:{dt} \\ $$$$=\:\mathrm{2}\:\int_{\sqrt{\mathrm{3}}} ^{\sqrt{\mathrm{7}}} \:{t}^{\mathrm{2}} \:{dt}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\:\left\{\:\left(\sqrt{\mathrm{7}}\right)^{\mathrm{3}} \:−\left(\sqrt{\mathrm{3}}\right)^{\mathrm{3}} \right\}\:{and}\:{the} \\ $$$${changement}\:\sqrt{{x}−\mathrm{1}}={t}\:{give} \\ $$$$\int_{\mathrm{2}} ^{\mathrm{6}} \:\sqrt{{x}−\mathrm{1}}{dx}\:=\:\int_{\mathrm{1}} ^{\sqrt{\mathrm{5}}} {t}\:\left(\mathrm{2}{t}\right){dt}\:=\:\frac{\mathrm{2}}{\mathrm{3}}\left\{\:\:\left(\sqrt{\mathrm{5}}\right)^{\mathrm{3}} \:−\mathrm{1}\right\}\:\Rightarrow \\ $$$${I}\:=\:\frac{\mathrm{1}}{\mathrm{3}}\left\{\:\mathrm{7}\sqrt{\mathrm{7}}\:−\mathrm{3}\sqrt{\mathrm{3}}\:\:−\mathrm{5}\sqrt{\mathrm{5}}\:\:+\mathrm{1}\right\} \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jun/18
$$\int_{\mathrm{2}} ^{\mathrm{6}} \frac{\sqrt{{x}+\mathrm{1}}\:−\sqrt{{x}−\mathrm{1}}\:}{\mathrm{2}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{2}} ^{\mathrm{6}} \sqrt{{x}+\mathrm{1}}\:{dx}−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{2}} ^{\mathrm{6}} \sqrt{{x}−\mathrm{1}}\:{dx} \\ $$$${x}+\mathrm{1}={t}_{\mathrm{1}} ^{\mathrm{2}} \:\:\:\:\:\:\:\:\:\:\:\:{x}−\mathrm{1}={t}_{\mathrm{2}} ^{\mathrm{2}} \:\:\:\:\:\:{so}\:\:{dx}=\mathrm{2}{t}_{\mathrm{2}} {dt}_{\mathrm{2}} \\ $$$${dx}=\mathrm{2}{t}_{\mathrm{1}} {dt}_{\mathrm{1}} \\ $$$$\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\sqrt{\mathrm{3}}\:} ^{\sqrt{\mathrm{7}}\:} {t}_{\mathrm{1}} ×\mathrm{2}{t}_{\mathrm{1}} {dt}_{\mathrm{1}} \:\:\:\:−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{1}} ^{\sqrt{\mathrm{5}}} {t}_{\mathrm{2}} ×\mathrm{2}{t}_{\mathrm{2}} {dt}_{\mathrm{2}} \\ $$$${nw}\:{simple}\:{to}\:{get}\:{result}… \\ $$