Menu Close

calculate-2-dx-x-1-4-x-2-x-1-2-




Question Number 95585 by turbo msup by abdo last updated on 26/May/20
calculate ∫_2 ^(+∞)    (dx/((x−1)^4 (x^2 +x+1)^2 ))
calculate2+dx(x1)4(x2+x+1)2
Answered by MJS last updated on 26/May/20
∫(dx/((x−1)^4 (x^2 +x+1)^2 ))=       [Ostrogradski]  =−((8x^4 −11x^3 −2x^2 −x+9)/(27(x−1)^4 (x^2 +x+1)))−(2/(27))∫((4x+5)/((x−1)(x^2 +x+1)))dx    −(2/(27))∫((4x+5)/((x−1)(x^2 +x+1)))dx=  =(2/(27))∫((3x+2)/(x^2 +x+1))dx−(2/9)∫(dx/(x−1))=  =((2(√3))/(81))arctan (((√3)(2x+1))/3) +(1/9)ln (x^2 +x+1) −(2/9)ln (x−1) =  =((2(√3))/(81))arctan (((√3)(2x+1))/3) +(1/9)ln ((x^2 +x+1)/((x−1)^2 )) +C    ⇒  ∫_2 ^(+∞) (dx/((x−1)^4 (x^2 +x+1)^2 ))=  =((13)/(63))+((π(√3))/(81))−((ln 7)/9)−((2(√3))/(81))arctan ((5(√3))/3)
dx(x1)4(x2+x+1)2=[Ostrogradski]=8x411x32x2x+927(x1)4(x2+x+1)2274x+5(x1)(x2+x+1)dx2274x+5(x1)(x2+x+1)dx==2273x+2x2+x+1dx29dxx1==2381arctan3(2x+1)3+19ln(x2+x+1)29ln(x1)==2381arctan3(2x+1)3+19lnx2+x+1(x1)2+C+2dx(x1)4(x2+x+1)2==1363+π381ln792381arctan533
Commented by mathmax by abdo last updated on 27/May/20
thank you sir mjs
thankyousirmjs

Leave a Reply

Your email address will not be published. Required fields are marked *