Menu Close

calculate-2-dx-x-3-x-2-1-2-




Question Number 99239 by abdomathmax last updated on 19/Jun/20
calculate ∫_2 ^(+∞)  (dx/(x^3 (x^2 −1)^2 ))
calculate2+dxx3(x21)2
Answered by MJS last updated on 19/Jun/20
Ostrogradski gives  −((2x^2 −1)/(2x^2 (x^2 −1)))−2∫(dx/(x(x^2 −1)))=  =−((2x^2 −1)/(2x^2 (x^2 −1)))+ln ∣(x^2 /(x^2 −1))∣ +C  ⇒  ∫_2 ^∞ (dx/(x^3 (x^2 −1)))=(7/(24))+ln (3/4)
Ostrogradskigives2x212x2(x21)2dxx(x21)==2x212x2(x21)+lnx2x21+C2dxx3(x21)=724+ln34
Commented by Ar Brandon last updated on 20/Jun/20
Hello Mr MJS,�� greetings to you Sir.
Commented by MJS last updated on 20/Jun/20
also back to you!
Answered by mathmax by abdo last updated on 21/Jun/20
I =∫_2 ^(+∞)  (dx/(x^3 (x^2 −1)^2 )) ⇒ I =∫_2 ^∞  (dx/(((x/(x−1)))^3  (x−1)^5 (x+1)^2 ))  we do the changement (x/(x−1)) =t ⇒x =tx−t ⇒(1−t)x =−t ⇒x =(t/(t−1))  ⇒(dx/dt) =(1+(1/(t−1)))^′  =−(1/((t−1)^2 )) and x−1 =(t/(t−1))−1 =((t−t+1)/(t−1)) =(1/(t−1))  x+1 =(t/(t−1)) +1 =((t+t−1)/(t−1)) =((2t−1)/(t−1)) ⇒  I =−∫_1 ^2   ((−dt)/((t−1)^2 t^3 ((1/(t−1)))^5 (((2t−1)/(t−1)))^2 )) =∫_1 ^2  (((t−1)^7 )/((t−1)^2  t^3 (2t−1)^2 ))dt  =∫_1 ^2  (((t−1)^5 )/(t^3 (2t−1)^2 ))dt =∫_1 ^2  ((Σ_(k=0) ^5  C_5 ^k  t^k (−1)^(5−k) )/(t^3 (2t−1)^2 ))dt  =−Σ_(k=0) ^5  C_5 ^k  (−1)^k  ∫_1 ^2  (t^k /(t^3 (2t−1)^2 ))dt  after we decompose F(t) =(t^k /(t^3 (2t−1)^2 ))  ...be continued...
I=2+dxx3(x21)2I=2dx(xx1)3(x1)5(x+1)2wedothechangementxx1=tx=txt(1t)x=tx=tt1dxdt=(1+1t1)=1(t1)2andx1=tt11=tt+1t1=1t1x+1=tt1+1=t+t1t1=2t1t1I=12dt(t1)2t3(1t1)5(2t1t1)2=12(t1)7(t1)2t3(2t1)2dt=12(t1)5t3(2t1)2dt=12k=05C5ktk(1)5kt3(2t1)2dt=k=05C5k(1)k12tkt3(2t1)2dtafterwedecomposeF(t)=tkt3(2t1)2becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *