Question Number 99239 by abdomathmax last updated on 19/Jun/20
$$\mathrm{calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{3}} \left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Answered by MJS last updated on 19/Jun/20
$$\mathrm{Ostrogradski}\:\mathrm{gives} \\ $$$$−\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)}−\mathrm{2}\int\frac{{dx}}{{x}\left({x}^{\mathrm{2}} −\mathrm{1}\right)}= \\ $$$$=−\frac{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)}+\mathrm{ln}\:\mid\frac{{x}^{\mathrm{2}} }{{x}^{\mathrm{2}} −\mathrm{1}}\mid\:+{C} \\ $$$$\Rightarrow \\ $$$$\underset{\mathrm{2}} {\overset{\infty} {\int}}\frac{{dx}}{{x}^{\mathrm{3}} \left({x}^{\mathrm{2}} −\mathrm{1}\right)}=\frac{\mathrm{7}}{\mathrm{24}}+\mathrm{ln}\:\frac{\mathrm{3}}{\mathrm{4}} \\ $$
Commented by Ar Brandon last updated on 20/Jun/20
Hello Mr MJS, greetings to you Sir.
Commented by MJS last updated on 20/Jun/20
also back to you!
Answered by mathmax by abdo last updated on 21/Jun/20
$$\mathrm{I}\:=\int_{\mathrm{2}} ^{+\infty} \:\frac{\mathrm{dx}}{\mathrm{x}^{\mathrm{3}} \left(\mathrm{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }\:\Rightarrow\:\mathrm{I}\:=\int_{\mathrm{2}} ^{\infty} \:\frac{\mathrm{dx}}{\left(\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}\right)^{\mathrm{3}} \:\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{5}} \left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\mathrm{we}\:\mathrm{do}\:\mathrm{the}\:\mathrm{changement}\:\frac{\mathrm{x}}{\mathrm{x}−\mathrm{1}}\:=\mathrm{t}\:\Rightarrow\mathrm{x}\:=\mathrm{tx}−\mathrm{t}\:\Rightarrow\left(\mathrm{1}−\mathrm{t}\right)\mathrm{x}\:=−\mathrm{t}\:\Rightarrow\mathrm{x}\:=\frac{\mathrm{t}}{\mathrm{t}−\mathrm{1}} \\ $$$$\Rightarrow\frac{\mathrm{dx}}{\mathrm{dt}}\:=\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{t}−\mathrm{1}}\right)^{'} \:=−\frac{\mathrm{1}}{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{and}\:\mathrm{x}−\mathrm{1}\:=\frac{\mathrm{t}}{\mathrm{t}−\mathrm{1}}−\mathrm{1}\:=\frac{\mathrm{t}−\mathrm{t}+\mathrm{1}}{\mathrm{t}−\mathrm{1}}\:=\frac{\mathrm{1}}{\mathrm{t}−\mathrm{1}} \\ $$$$\mathrm{x}+\mathrm{1}\:=\frac{\mathrm{t}}{\mathrm{t}−\mathrm{1}}\:+\mathrm{1}\:=\frac{\mathrm{t}+\mathrm{t}−\mathrm{1}}{\mathrm{t}−\mathrm{1}}\:=\frac{\mathrm{2t}−\mathrm{1}}{\mathrm{t}−\mathrm{1}}\:\Rightarrow \\ $$$$\mathrm{I}\:=−\int_{\mathrm{1}} ^{\mathrm{2}} \:\:\frac{−\mathrm{dt}}{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} \mathrm{t}^{\mathrm{3}} \left(\frac{\mathrm{1}}{\mathrm{t}−\mathrm{1}}\right)^{\mathrm{5}} \left(\frac{\mathrm{2t}−\mathrm{1}}{\mathrm{t}−\mathrm{1}}\right)^{\mathrm{2}} }\:=\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{7}} }{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{2}} \:\mathrm{t}^{\mathrm{3}} \left(\mathrm{2t}−\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dt} \\ $$$$=\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{\left(\mathrm{t}−\mathrm{1}\right)^{\mathrm{5}} }{\mathrm{t}^{\mathrm{3}} \left(\mathrm{2t}−\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dt}\:=\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{5}} \:\mathrm{C}_{\mathrm{5}} ^{\mathrm{k}} \:\mathrm{t}^{\mathrm{k}} \left(−\mathrm{1}\right)^{\mathrm{5}−\mathrm{k}} }{\mathrm{t}^{\mathrm{3}} \left(\mathrm{2t}−\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dt} \\ $$$$=−\sum_{\mathrm{k}=\mathrm{0}} ^{\mathrm{5}} \:\mathrm{C}_{\mathrm{5}} ^{\mathrm{k}} \:\left(−\mathrm{1}\right)^{\mathrm{k}} \:\int_{\mathrm{1}} ^{\mathrm{2}} \:\frac{\mathrm{t}^{\mathrm{k}} }{\mathrm{t}^{\mathrm{3}} \left(\mathrm{2t}−\mathrm{1}\right)^{\mathrm{2}} }\mathrm{dt}\:\:\mathrm{after}\:\mathrm{we}\:\mathrm{decompose}\:\mathrm{F}\left(\mathrm{t}\right)\:=\frac{\mathrm{t}^{\mathrm{k}} }{\mathrm{t}^{\mathrm{3}} \left(\mathrm{2t}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$…\mathrm{be}\:\mathrm{continued}… \\ $$