Question Number 126873 by mathmax by abdo last updated on 25/Dec/20

Answered by Ar Brandon last updated on 25/Dec/20
![I=∫_(2019) ^(2021) (dx/((x−1)^(2019) (x+1)^(2021) )) =∫_(2019) ^(2021) (((x−1)^2 )/((x−1)^(2021) (x+1)^(2021) ))dx =∫_(2019) ^(2021) ((x^2 −2x+1)/((x^2 −1)^(2021) ))dx x^2 −2x+1=λ(x^2 −1)+μ{(d/dx)(x^2 −1)}+γ =λ(x^2 −1)+μ(2x)+γ λ=1, μ=−1, −λ+γ=1, γ=2 I=∫_(2019) ^(2021) {((x^2 −1)/((x^2 −1)^(2021) ))−((2x)/((x^2 −1)^(2021) ))+(2/((x^2 −1)^(2021) ))}dx =[(1/((x^2 −1)^(2020) ))]_(2019) ^(2021) +∫_(2019) ^(2021) {((x^2 −1)/((x^2 −1)^(2021) ))+(2/((x^2 −1)^(2021) ))}dx f(a)=∫(dx/(x^2 −a^2 ))=−(1/a)Arctanh((x/a))+C f ′(a)=∫((2a)/((x^2 −a^2 )^2 )) ...](https://www.tinkutara.com/question/Q126875.png)
Answered by mindispower last updated on 25/Dec/20
![=∫_(2019) ^(2021) (dx/((x+1)^2 (((x−1)/(x+1)))^(2019) )) t=((x−1)/(x+1))⇒dt=(2/((x+1)^2 ))dx ⇔(1/2)∫_((2018)/(2020)) ^((2020)/(2022)) (dt/t^(2019) )=(1/(2(−2018)))[(((2020)/(2022)))^(−2018) −(((2018)/(2020)))^(−2018) ]](https://www.tinkutara.com/question/Q126897.png)
Commented by mathmax by abdo last updated on 27/Dec/20

Answered by mathmax by abdo last updated on 27/Dec/20
![I =∫_(2019) ^(2021) (dx/((x−1)^(2019) (x+1)^(2021) )) ⇒I =∫_(2019) ^(2021) (dx/((((x−1)/(x+1)))^(2019) (x+1)^(2021+2019) )) we do the changement ((x−1)/(x+1))=t ⇒x−1=tx+t ⇒(1−t)x=t+1 ⇒ x=((1+t)/(1−t)) ⇒(dx/dt)=((1−t−(1+t)(−1))/((1−t)^2 ))=(2/((1−t)^2 )) and x+1=((1+t)/(1−t))+1=((1+t+1−t)/(1−t))=(2/(1−t)) I =∫_(−((1010)/(1009))) ^(−((1011)/(1010))) (2/((1−t)^2 ×t^(2019) ((2/(1−t)))^(2021+2019) ))dt =(2/2^(4040) ) ∫_(−((1010)/(1009))) ^(−((1011)/(1010))) (((1−t)^(4040) )/((1−t)^2 t^(2019) ))dt =(1/2^(4039) )∫_(−((1010)/(1009))) ^(−((1011)/(1010))) (((t−1)^(4038) )/t^(2019) )dt =(1/2^(4039) )∫_(−((1010)/(1009))) ^(−((1011)/(1010))) ((Σ_(k=0) ^(4038) C_(4038) ^k t^k (−1)^(4038−k) )/t^(2019) )dt =(1/2^(4039) )Σ_(k=0) ^(4038) (−1)^k C_(4038) ^k ∫_(−((1010)/(1009))) ^(−((1011)/(1010))) t^(k−2019) dt =(1/2^(4039) ) Σ_(k=0 and k≠2018) ^(4038) (((−1)^k C_(4038) ^k )/(k−2018))[ t^(k−2018) ]_(−((1010)/(1009))) ^(−((1011)/(1010))) +(1/2^(4039) )C_(4038) ^(2018) {ln(((1011)/(1010)))−ln(((1010)/(1009)))} ⇒ I =(1/2^(4039) ) Σ_(k=0 andk≠2018) ^(4038) (((−1)^k C_(4038) ^k )/(k−2018)){(−((1011)/(1010)))^(k−2018) −(−((1010)/(1009)))^(k−2018) } +(1/2^(4039) ) C_(4038) ^(2018) {ln(((1011)/(1010)))−ln(((1010)/(1009)))}](https://www.tinkutara.com/question/Q127208.png)