Menu Close

calculate-2019-2021-dx-x-1-2019-x-1-2021-




Question Number 126873 by mathmax by abdo last updated on 25/Dec/20
calculate ∫_(2019) ^(2021)    (dx/((x−1)^(2019) (x+1)^(2021) ))
calculate20192021dx(x1)2019(x+1)2021
Answered by Ar Brandon last updated on 25/Dec/20
I=∫_(2019) ^(2021) (dx/((x−1)^(2019) (x+1)^(2021) ))     =∫_(2019) ^(2021) (((x−1)^2 )/((x−1)^(2021) (x+1)^(2021) ))dx     =∫_(2019) ^(2021) ((x^2 −2x+1)/((x^2 −1)^(2021) ))dx  x^2 −2x+1=λ(x^2 −1)+μ{(d/dx)(x^2 −1)}+γ                       =λ(x^2 −1)+μ(2x)+γ  λ=1, μ=−1, −λ+γ=1, γ=2  I=∫_(2019) ^(2021) {((x^2 −1)/((x^2 −1)^(2021) ))−((2x)/((x^2 −1)^(2021) ))+(2/((x^2 −1)^(2021) ))}dx    =[(1/((x^2 −1)^(2020) ))]_(2019) ^(2021) +∫_(2019) ^(2021) {((x^2 −1)/((x^2 −1)^(2021) ))+(2/((x^2 −1)^(2021) ))}dx  f(a)=∫(dx/(x^2 −a^2 ))=−(1/a)Arctanh((x/a))+C  f ′(a)=∫((2a)/((x^2 −a^2 )^2 ))  ...
I=20192021dx(x1)2019(x+1)2021=20192021(x1)2(x1)2021(x+1)2021dx=20192021x22x+1(x21)2021dxx22x+1=λ(x21)+μ{ddx(x21)}+γ=λ(x21)+μ(2x)+γλ=1,μ=1,λ+γ=1,γ=2I=20192021{x21(x21)20212x(x21)2021+2(x21)2021}dx=[1(x21)2020]20192021+20192021{x21(x21)2021+2(x21)2021}dxf(a)=dxx2a2=1aArctanh(xa)+Cf(a)=2a(x2a2)2
Answered by mindispower last updated on 25/Dec/20
=∫_(2019) ^(2021) (dx/((x+1)^2 (((x−1)/(x+1)))^(2019) ))  t=((x−1)/(x+1))⇒dt=(2/((x+1)^2 ))dx  ⇔(1/2)∫_((2018)/(2020)) ^((2020)/(2022)) (dt/t^(2019) )=(1/(2(−2018)))[(((2020)/(2022)))^(−2018) −(((2018)/(2020)))^(−2018) ]
=20192021dx(x+1)2(x1x+1)2019t=x1x+1dt=2(x+1)2dx122018202020202022dtt2019=12(2018)[(20202022)2018(20182020)2018]
Commented by mathmax by abdo last updated on 27/Dec/20
not correct sir mind!
notcorrectsirmind!
Answered by mathmax by abdo last updated on 27/Dec/20
I =∫_(2019) ^(2021)  (dx/((x−1)^(2019) (x+1)^(2021) )) ⇒I =∫_(2019) ^(2021)  (dx/((((x−1)/(x+1)))^(2019) (x+1)^(2021+2019) ))  we do the changement ((x−1)/(x+1))=t ⇒x−1=tx+t ⇒(1−t)x=t+1 ⇒  x=((1+t)/(1−t)) ⇒(dx/dt)=((1−t−(1+t)(−1))/((1−t)^2 ))=(2/((1−t)^2 )) and x+1=((1+t)/(1−t))+1=((1+t+1−t)/(1−t))=(2/(1−t))  I =∫_(−((1010)/(1009))) ^(−((1011)/(1010)))     (2/((1−t)^2 ×t^(2019) ((2/(1−t)))^(2021+2019) ))dt  =(2/2^(4040) ) ∫_(−((1010)/(1009))) ^(−((1011)/(1010)))     (((1−t)^(4040) )/((1−t)^2  t^(2019) ))dt  =(1/2^(4039) )∫_(−((1010)/(1009))) ^(−((1011)/(1010)))   (((t−1)^(4038) )/t^(2019) )dt =(1/2^(4039) )∫_(−((1010)/(1009))) ^(−((1011)/(1010))) ((Σ_(k=0) ^(4038) C_(4038) ^k  t^k (−1)^(4038−k) )/t^(2019) )dt  =(1/2^(4039) )Σ_(k=0) ^(4038)  (−1)^k  C_(4038) ^k  ∫_(−((1010)/(1009))) ^(−((1011)/(1010))) t^(k−2019)  dt  =(1/2^(4039) ) Σ_(k=0 and k≠2018) ^(4038)  (((−1)^k C_(4038) ^k )/(k−2018))[ t^(k−2018) ]_(−((1010)/(1009))) ^(−((1011)/(1010)))   +(1/2^(4039) )C_(4038) ^(2018)  {ln(((1011)/(1010)))−ln(((1010)/(1009)))} ⇒  I =(1/2^(4039) ) Σ_(k=0 andk≠2018) ^(4038)    (((−1)^k  C_(4038) ^k )/(k−2018)){(−((1011)/(1010)))^(k−2018) −(−((1010)/(1009)))^(k−2018) }  +(1/2^(4039) ) C_(4038) ^(2018) {ln(((1011)/(1010)))−ln(((1010)/(1009)))}
I=20192021dx(x1)2019(x+1)2021I=20192021dx(x1x+1)2019(x+1)2021+2019wedothechangementx1x+1=tx1=tx+t(1t)x=t+1x=1+t1tdxdt=1t(1+t)(1)(1t)2=2(1t)2andx+1=1+t1t+1=1+t+1t1t=21tI=10101009101110102(1t)2×t2019(21t)2021+2019dt=2240401010100910111010(1t)4040(1t)2t2019dt=1240391010100910111010(t1)4038t2019dt=1240391010100910111010k=04038C4038ktk(1)4038kt2019dt=124039k=04038(1)kC4038k1010100910111010tk2019dt=124039k=0andk20184038(1)kC4038kk2018[tk2018]1010100910111010+124039C40382018{ln(10111010)ln(10101009)}I=124039k=0andk20184038(1)kC4038kk2018{(10111010)k2018(10101009)k2018}+124039C40382018{ln(10111010)ln(10101009)}

Leave a Reply

Your email address will not be published. Required fields are marked *