Menu Close

calculate-2x-x-2-mx-1-2-dx-with-m-lt-2-




Question Number 36056 by abdo mathsup 649 cc last updated on 28/May/18
calculate  ∫_(−∞) ^(+∞)    ((2x)/((x^2  +mx +1)^2 ))dx with ∣m∣<2
calculate+2x(x2+mx+1)2dxwithm∣<2
Commented by abdo mathsup 649 cc last updated on 30/May/18
let consider the complex function  ϕ(z) = ((2z)/((z^2  +mz +1)^2 ))  poles of ϕ!  roots of z^(2 )  +mz +1  Δ =m^2  −4 <0  because ∣m∣<2 ⇒  Δ =−(4−m^2 ) ={i(√(4−m^2 )) }^2   z_1 = ((−m +i(√(4−m^2 )))/2)  and z_2  = ((−m−i(√(4−m^2 )))/2)  the poles of ϕ are z_1  and z_2   (doubles)  ∫_(−∞) ^(+∞)   ϕ(z)dz =2iπ Res(ϕ, z_1 )  ϕ(z) = ((2z)/((z−z_1 )^2 (z−z_2 )^2 ))  Res(ϕ,z_1 ) =lim_(z→z_1  )  (1/((2−1):)){ (z−z_1 )^2 ϕ(z)}^′
letconsiderthecomplexfunctionφ(z)=2z(z2+mz+1)2polesofφ!rootsofz2+mz+1Δ=m24<0becausem∣<2Δ=(4m2)={i4m2}2z1=m+i4m22andz2=mi4m22thepolesofφarez1andz2(doubles)+φ(z)dz=2iπRes(φ,z1)φ(z)=2z(zz1)2(zz2)2Res(φ,z1)=limzz11(21):{(zz1)2φ(z)}
Commented by abdo mathsup 649 cc last updated on 30/May/18
Res(ϕ ,z_1 ) =lim_(z→z_1 )   { ((2z)/((z−z_2 )^2 ))}^′   =lim_(z→z_1 )    ((2(z−z_2 )^2   −2z 2(z−z_2 ))/((z−z_2 )^4 ))  =lim_(z→z_1 )    ((2(z−z_2 ) −4z)/((z−z_2 )^3 )) = 2 ((z_1  −z_2  −2z_1 )/((z_1  −z_2 )^3 ))  =2((i(√(4−m^2 ))  −2((−m+i(√(4−m^2 )))/2))/((i(√(4−m^2 )))^3 ))  =2  (m/(−i(4−m^2 )(√(4−m^( ))))  =  ((−2m)/(i(4−m^2 )(√(4−m^2 ))))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ ((−2m)/(i(4−m^2 )(√(4−m^2 ))))  =  ((−4mπ)/((4−m^2 )(√(4−m^2 ))))  so   I = ((−4mπ)/((4−m^2 )(√(4−m^2 )))) .
Res(φ,z1)=limzz1{2z(zz2)2}=limzz12(zz2)22z2(zz2)(zz2)4=limzz12(zz2)4z(zz2)3=2z1z22z1(z1z2)3=2i4m22m+i4m22(i4m2)3=2mi(4m2)4m(=2mi(4m2)4m2+φ(z)dz=2iπ2mi(4m2)4m2=4mπ(4m2)4m2soI=4mπ(4m2)4m2.
Answered by sma3l2996 last updated on 28/May/18
I=∫_(−∞) ^(+∞) ((2x)/((x^2 +mx+1)^2 ))dx=∫_(−∞) ^(+∞) ((2x+m−m)/((x^2 +mx+1)^2 ))dx   =−[(1/(x^2 +mx+1))]_(−∞) ^(+∞) −m∫_(−∞) ^(+∞) (dx/((x^2 +2×(m/2)×x+(m^2 /4)−(m^2 /4)+1)^2 ))  =0−m∫_(−∞) ^(+∞) (dx/(((x+(m/2))^2 +((4−m^2 )/4))^2 ))  =−m∫_(−∞) ^(+∞) (dx/((((4−m^2 )/4)((((2x+m)/( (√(4−m^2 )))))^2 +1))^2 ))   /  ∣m∣<2  let  u=((2x+m)/( (√(4−m^2 ))))⇒dx=((√(4−m^2 ))/2)du  I=−((8m(√(4−m^2 )))/((4−m^2 )^2 ))∫_(−∞) ^(+∞) (du/((u^2 +1)^2 ))  tant=u⇒dt=(du/(1+u^2 ))  (du/((u^2 +1)^2 ))=(dt/(1+tan^2 t))=cos^2 (t)dt=(((1+cos(2t))/2))dt  ∫_(−π/2) ^(π/2) (1+cos(2t))dt=[t+(1/2)sin2t]_(−π/2) ^(π/2) =π  I=−((4πm(√(4−m^2 )))/((4−m^2 )^2 ))
I=+2x(x2+mx+1)2dx=+2x+mm(x2+mx+1)2dx=[1x2+mx+1]+m+dx(x2+2×m2×x+m24m24+1)2=0m+dx((x+m2)2+4m24)2=m+dx(4m24((2x+m4m2)2+1))2/m∣<2letu=2x+m4m2dx=4m22duI=8m4m2(4m2)2+du(u2+1)2tant=udt=du1+u2du(u2+1)2=dt1+tan2t=cos2(t)dt=(1+cos(2t)2)dtπ/2π/2(1+cos(2t))dt=[t+12sin2t]π/2π/2=πI=4πm4m2(4m2)2
Commented by abdo mathsup 649 cc last updated on 30/May/18
correct sir sma3l  thanks a lots.
correctsirsma3lthanksalots.

Leave a Reply

Your email address will not be published. Required fields are marked *