Menu Close

calculate-3-dx-x-2-1-3-x-2-2-




Question Number 103591 by mathmax by abdo last updated on 16/Jul/20
calculate  ∫_3 ^(+∞)       (dx/((x^2 −1)^3 (x+2)^2 ))
calculate3+dx(x21)3(x+2)2
Commented by Worm_Tail last updated on 16/Jul/20
       ∫_3 ^(+∞)       (dx/((x^2 −1)^3 (x+2)^2 ))     pfd        ∫_3 ^(oo) ((−3)/(16(x+1)))+(4/(27(x+2)))+(1/(16(x+1)^2 ))+(1/(27(x+2)^2 ))−(1/(8(x+1)^3 ))+((17)/(432(x−1)))−((13)/(432(x−1)^2 ))+(1/(72(x−1)^3 ))dx        [((−3ln(x+1))/(16))+(4/(27))ln(x+2)−(1/(16(x+1)))−(1/(27(x+2)))+(1/(16(x+1)^2 ))+((17ln(x−1))/(432))+((13)/(432(x−1)))−(1/(144(x−1)^2 ))]_3 ^(oo)        [((ln(((x+2)^(64) (x−1)^(17) )/((x+1)^(81) )))/(432))−(1/(27(x+2)))+(1/(16(x+1)^2 ))+((13)/(432(x−1)))−(1/(144(x−1)^2 ))]_3 ^(oo)    lim_(t→oo)     [((ln(((t+2)^(64) (t−1)^(17) )/((t+1)^(81) )))/(432))−(1/(27(t+2)))+(1/(16(t+1)^2 ))+((13)/(432(t−1)))−(1/(144(t−1)^2 ))]   −    [((ln(((3+2)^(64) (3−1)^(17) )/((3+1)^(81) )))/(432))−(1/(27(3+2)))+(1/(16(3+1)^2 ))+((13)/(432(3−1)))−(1/(144(3−1)^2 ))]      lim_(t→oo)     [((ln(1))/(432))−0+0+0−0]−[((ln((5^(64) ×2^(17) )/4^(81) ))/(432))+((113)/(11520))]   −[((64ln(5)−145ln(2))/(432))+((113)/(11520))]   ((−64ln(5)+145ln(2))/(432))−((113)/(11520))
3+dx(x21)3(x+2)2pfd3oo316(x+1)+427(x+2)+116(x+1)2+127(x+2)218(x+1)3+17432(x1)13432(x1)2+172(x1)3dx[3ln(x+1)16+427ln(x+2)116(x+1)127(x+2)+116(x+1)2+17ln(x1)432+13432(x1)1144(x1)2]3oo[ln(x+2)64(x1)17(x+1)81432127(x+2)+116(x+1)2+13432(x1)1144(x1)2]3oolimtoo[ln(t+2)64(t1)17(t+1)81432127(t+2)+116(t+1)2+13432(t1)1144(t1)2][ln(3+2)64(31)17(3+1)81432127(3+2)+116(3+1)2+13432(31)1144(31)2]limtoo[ln(1)4320+0+00][ln564×217481432+11311520][64ln(5)145ln(2)432+11311520]64ln(5)+145ln(2)43211311520
Commented by Worm_Tail last updated on 16/Jul/20
mistake  might   have   crept   in
mistakemighthavecreptin
Commented by abdomathmax last updated on 16/Jul/20
can you chow how do you find the decomposition?
canyouchowhowdoyoufindthedecomposition?
Commented by Worm_Tail last updated on 16/Jul/20
       ∫_3 ^(+∞)       (dx/((x^2 −1)^3 (x+2)^2 ))     pfd        (A/((x+1)))+(B/((x+2)))+(C/((x+1)^2 ))+(D/((x+2)^2 ))+(E/((x+1)^3 ))+(F/((x−1)))+(G/((x−1)^2 ))+(H/((x−1)^3 ))=(1/((x^2 −1)^3 (x+2)^2 ))  you continue  from here
3+dx(x21)3(x+2)2pfdA(x+1)+B(x+2)+C(x+1)2+D(x+2)2+E(x+1)3+F(x1)+G(x1)2+H(x1)3=1(x21)3(x+2)2youcontinuefromhere
Answered by abdomathmax last updated on 16/Jul/20
I =∫_3 ^∞  (dx/((x^2 −1)^3 (x+2)^2 )) ⇒ I =∫_3 ^∞  (dx/((x−1)^3 (x+1)^3 (x+2)^2 ))  =∫_3 ^∞  (dx/((((x−1)/(x+1)))^3 (x+1)^6 (x+2)^2 )) we do tbe cha7gement  ((x−1)/(x+1)) =t ⇒x−1 =tx+t ⇒(1−t)x =t+1 ⇒  x =((1+t)/(1−t)) ⇒ (dx/dt) =((1−t+(1+t))/((1−t)^2 )) =(2/((1−t)^2 ))  x+1 =((1+t)/(1−t)) +1 =((1+t+1−t)/(1−t)) =(2/(1−t))  x+2 =((1+t)/(1−t))+2 =((1+t+2−2t)/(1−t)) =((3−t)/(1−t)) ⇒  I = ∫_(1/2) ^1   ((2dt)/((1−t)^2 t^3 ((2/(1−t)))^6 (((3−t)/(1−t)))^2 ))  =2∫_(1/2) ^1    (((t−1)^8 )/((t−1)^2 t^3  .2^6 (3−t)^2 ))dt  =(1/2^5 ) ∫_(1/2) ^1    (((t−1)^6 )/(t^3 (3−t)^2 ))dt =(1/2^5 ) ∫_(1/2) ^1  (((t−1)^6 )/(((t/(t−3)))^3 (t−3)^5 ))dt  again ch.(t/(t−3)) =z ⇒t  =zt−3z ⇒(1−z)t =−3z ⇒  t =((−3z)/(1−z)) =((3z)/(z−1)) and t−3 =((3z)/(z−1))−3 =((3z−3z+3)/(z−1))  =(3/(z−1))  and t−1 =((3z)/(z−1))−1 =((3z−z+1)/(z−1)) =((2z+1)/(z−1))  I =(1/2^5 )∫_(−(1/5)) ^(−(1/2))   (((((2z+1)/(z−1)))^6 )/(z^3 ((3/(z−1)))^5 ))×((−3)/((z−1)^2 ))dz  =−(1/(2^5 .3^4 )) ∫_(−(1/5)) ^(−(1/2))    (((2z+1)^6 (z−1)^5 )/(z^3 (z−1)^8 )) dz  =−(1/(2^5 .3^4 )) ∫_(−(1/5)) ^(−(1/2))   (((2z+1)^6 )/(z^3 (z−1)^3 ))dz  =−(1/(2^5 .3^4 )) ∫_(−(1/5)) ^(−(1/2))  ((Σ_(k=0) ^6  C_6 ^k (2z)^k )/(z^3 (z−1)^3 ))dz  =−(1/(2^5 .3^4 )) ∫_(−(1/5)) ^(−(1/2)) Σ_(k=0) ^6  2^k  C_6 ^k  (z^k /(z^3 (z−1)^3 ))dz  =−(1/(2^5 .3^4 )) Σ_(k=0) ^6  2^k  C_6 ^k  ∫_(−(1/5)) ^(−(1/2))  (z^k /(z^3 (z−1)^3 ))dz  after we decompose F_k (z) =(z^k /(z^3 (z−1)^3 ))  ...be continued...
I=3dx(x21)3(x+2)2I=3dx(x1)3(x+1)3(x+2)2=3dx(x1x+1)3(x+1)6(x+2)2wedotbecha7gementx1x+1=tx1=tx+t(1t)x=t+1x=1+t1tdxdt=1t+(1+t)(1t)2=2(1t)2x+1=1+t1t+1=1+t+1t1t=21tx+2=1+t1t+2=1+t+22t1t=3t1tI=1212dt(1t)2t3(21t)6(3t1t)2=2121(t1)8(t1)2t3.26(3t)2dt=125121(t1)6t3(3t)2dt=125121(t1)6(tt3)3(t3)5dtagainch.tt3=zt=zt3z(1z)t=3zt=3z1z=3zz1andt3=3zz13=3z3z+3z1=3z1andt1=3zz11=3zz+1z1=2z+1z1I=1251512(2z+1z1)6z3(3z1)5×3(z1)2dz=125.341512(2z+1)6(z1)5z3(z1)8dz=125.341512(2z+1)6z3(z1)3dz=125.341512k=06C6k(2z)kz3(z1)3dz=125.341512k=062kC6kzkz3(z1)3dz=125.34k=062kC6k1512zkz3(z1)3dzafterwedecomposeFk(z)=zkz3(z1)3becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *