Menu Close

calculate-3-dx-x-2-x-2-




Question Number 35686 by prof Abdo imad last updated on 22/May/18
calculate  ∫_(√3) ^(+∞)      (dx/(x(√( 2+x^2 )))) .
calculate3+dxx2+x2.
Commented by prof Abdo imad last updated on 22/May/18
let put I  = ∫_(√3) ^(+∞)      (dx/(x(√(2+x^2 ))))  changement  x=(√2)sh(t) give  t =argsh((x/( (√2)))) and  I = ∫_(argsh(((√3)/( (√2))))) ^(+∞)  (((√2)ch(t)dt)/( (√2)sh(t)(√2)(√(1+sht^2 ))))  = ∫_(ln(((√3)/( (√2)))  +(√(1  +(3/2))))) ^(+∞)       (dt/( (√2)sh(t)))  =(1/( (√2))) ∫_(ln( (((√3) +(√5))/( (√2))))) ^(+∞)      2(dt/(e^t  −e^(−t) ))  =(√2) ∫_(ln((((√3) +(√5))/( (√2))))) ^(+∞)      (dt/(e^t  −e^(−t) ))  =_(e^t =x)     (√2) ∫_(((√3)+(√5))/( (√2))) ^(+∞)       (1/(x−(1/x))) (dx/x)  I = (√2) ∫_(((√3) +(√5))/( (√2))) ^(+∞)      (dx/(x^2  −1))  =((√2)/2) ∫_(((√3)+(√5))/( (√2))) ^(+∞)   { (1/(x−1)) −(1/(x+1))}dx  =((√2)/2)[ln∣((x−1)/(x+1))∣]_(((√3) +(√5))/( (√2))) ^(+∞)  =−((√2)/2)ln((((((√3)+(√5))/( (√2)))−1)/((((√3)+(√5))/( (√2)))+1)))  =−((√2)/2) ln((((√3) +(√5) −(√2))/( (√3) +(√5) +(√2))))
letputI=3+dxx2+x2changementx=2sh(t)givet=argsh(x2)andI=argsh(32)+2ch(t)dt2sh(t)21+sht2=ln(32+1+32)+dt2sh(t)=12ln(3+52)+2dtetet=2ln(3+52)+dtetet=et=x23+52+1x1xdxxI=23+52+dxx21=223+52+{1x11x+1}dx=22[lnx1x+1]3+52+=22ln(3+5213+52+1)=22ln(3+523+5+2)
Answered by tanmay.chaudhury50@gmail.com last updated on 22/May/18
=∫_(√3) ^∞ ((xdx)/(x^2 (√(2+x^2 ))))  t^2 =2+x^2     2tdt=2xdx  =∫_(√5) ^∞ ((tdt)/((t^2 −2)t))  =∫_(√5) ^∞ (dt/((t^2 −2)))  =(1/(2(√2)))∣ln(((t−(√2))/(t+(√2))))∣_(√5) ^∞   =(1/(2(√2)))∣ln(((1−(((√2) )/t))/(1+(((√2) )/t))))∣_(√5) ^∞   =(1/(2(√2))){0−ln(((1−((√2)/( (√5) )))/(1+((√(2   ))/( (√5))))))}  =(1/(2(√2))){−ln((((√5)  −(√2))/( (√(5+(√2) _ )))) }
=3xdxx22+x2t2=2+x22tdt=2xdx=5tdt(t22)t=5dt(t22)=122ln(t2t+2)5=122ln(12t1+2t)5=122{0ln(1251+25)}=122{ln(525+2}

Leave a Reply

Your email address will not be published. Required fields are marked *