Menu Close

calculate-3-x-1-dx-x-2-2-2x-3-3-




Question Number 98105 by mathmax by abdo last updated on 11/Jun/20
calculate ∫_3 ^(+∞)    (((x+1)dx)/((x−2)^2 ( 2x+3)^3 ))
calculate3+(x+1)dx(x2)2(2x+3)3
Answered by MJS last updated on 11/Jun/20
∫((x+1)/((x−2)^2 (2x+3)^3 ))dx=       [Ostrogradski]  =−((44x^2 +55x+8)/(686(x−2)(2x+3)^2 ))−((11)/(343))∫(dx/((x−2)(2x+3)))=  =−((44x^2 +55x+8)/(686(x−2)(2x+3)^2 ))+((11)/(2401))ln ∣((2x+3)/(x−2))∣ +C  ∫_3 ^(+∞) ((x+1)/((x−2)^2 (2x+3)^3 ))dx=((569)/(55566))+((11)/(2401))(ln 2 −2ln 3)
x+1(x2)2(2x+3)3dx=[Ostrogradski]=44x2+55x+8686(x2)(2x+3)211343dx(x2)(2x+3)==44x2+55x+8686(x2)(2x+3)2+112401ln2x+3x2+C+3x+1(x2)2(2x+3)3dx=56955566+112401(ln22ln3)
Commented by mathmax by abdo last updated on 11/Jun/20
thank you sir MJS
thankyousirMJS
Answered by mathmax by abdo last updated on 11/Jun/20
binome method     I =∫_3 ^(+∞)  (((x+1)dx)/((x−2)^2 (2x+3)^3 )) ⇒  I =∫_3 ^(+∞)  (((x+1)dx)/((((x−2)/(2x+3)))^2 (2x+3)^5 ))   changement ((x−2)/(2x+3)) =t give x−2=2tx+3t ⇒  (1−2t)x =3t+2 ⇒x =((3t+2)/(1−2t)) ⇒(dx/dt) =((3(1−2t)−(3t+2)(−2))/((1−2t)^2 ))  =((3−6t+6t+4)/((1−2t)^2 )) =(7/((1−2t)^2 ))   ,   2x+3 =((6t+4)/(1−2t)) +3 =((6t+4+3−6t)/(1−2t)) =(7/(1−2t))  x+1 =((3t+2)/(1−2t)) +1 =((3t+2+1−2t)/(1−2t)) =((t+3)/(1−2t)) ⇒  I =∫_(1/9) ^(1/2)  (((t+3))/((1−2t)t^2 ((7/(1−2t)))^5 ))×(7/((1−2t)^2 ))dt =(1/7^6 )∫_(1/9) ^(1/2)  (((t+3)(1−2t)^5 )/((1−2t)^3  t^2 ))dt  =(1/7^6 ) ∫_(1/9) ^(1/2)  (((t+3)(1−2t)^2 )/t^2 )dt  =(1/7^6 ) ∫_(1/9) ^(1/2)  (((t+3)(4t^2 −4t +1))/t^2 )dt  =(1/7^6 ) ∫_(1/9) ^(1/9)  ((4t^3  −4t^2 +t +12t^2 −12t +3)/t^2 )dt  =(1/7^6 ) ∫_(1/9) ^(1/(9 ))  ((4t^3 +8t^2 −11t +3)/t^2 )dt  =(1/7^6 ) ∫
binomemethodI=3+(x+1)dx(x2)2(2x+3)3I=3+(x+1)dx(x22x+3)2(2x+3)5changementx22x+3=tgivex2=2tx+3t(12t)x=3t+2x=3t+212tdxdt=3(12t)(3t+2)(2)(12t)2=36t+6t+4(12t)2=7(12t)2,2x+3=6t+412t+3=6t+4+36t12t=712tx+1=3t+212t+1=3t+2+12t12t=t+312tI=1912(t+3)(12t)t2(712t)5×7(12t)2dt=1761912(t+3)(12t)5(12t)3t2dt=1761912(t+3)(12t)2t2dt=1761912(t+3)(4t24t+1)t2dt=17619194t34t2+t+12t212t+3t2dt=17619194t3+8t211t+3t2dt=176
Commented by mathmax by abdo last updated on 11/Jun/20
I =(1/7^6 ) { ∫_(1/9) ^(1/2)  (4t +8−((11)/t) +(3/t^2 ))dt}  =(1/7^6 )[ 2t^2  +8t −11ln∣t∣ −(3/t)]_(1/9) ^(1/2)   =(1/7^6 )( (1/2) +4+11ln(2)−6 −2((1/9))^2  −8×(1/9) 11ln((1/9))+27) =...
I=176{1912(4t+811t+3t2)dt}=176[2t2+8t11lnt3t]1912=176(12+4+11ln(2)62(19)28×1911ln(19)+27)=

Leave a Reply

Your email address will not be published. Required fields are marked *