Menu Close

calculate-A-0-1-ln-1-ix-dx-2-calculate-0-1-ln-1-ix-dx-i-2-1-




Question Number 34635 by abdo mathsup 649 cc last updated on 09/May/18
calculate A(α)  = ∫_0 ^1  ln(1+αix)dx  2) calculate ∫_0 ^1  ln(1+ix) dx    (i^2  =−1)
calculateA(α)=01ln(1+αix)dx2)calculate01ln(1+ix)dx(i2=1)
Commented by tanmay.chaudhury50@gmail.com last updated on 09/May/18
Commented by abdo mathsup 649 cc last updated on 10/May/18
we have  1+i(αx) =(√(1+α^2 x^2 )) ( (1/( (√(1+α^2 x^2 )))) +i((αx)/( (√(1+α^2 x^2 )))))  =(√(1+α^2 x^2 ))  e^(iθ)    /cosθ =(1/( (√(1+α^2 x^2 )))) and  sinθ = ((αx)/( (√(1+α^2 x^2 )))) ⇒ tanθ =αx ⇒θ =arctan(αx)  ln(1 +iαx)=(1/2)ln(1+α^2 x^2 ) +i arctan(αx) ⇒  A(α) = (1/2) ∫_0 ^1  ln(1+α^2 x^2 )dx  +i ∫_0 ^1  arctan(αx)dx  =f(α) +i g(α)  2f^′ (α) =  ∫_0 ^1   ((2αx^2 )/(1+α^2 x^2 ))dx = (2/α) ∫_0 ^1   ((1+α^2 x^2  −1)/(1+α^2 x^2 ))dx  = (2/α)  −(2/α) ∫_0 ^1    (dx/(1+α^2 x^2 ))  =_(αx =u)   (2/α)  −(2/α)  ∫_0 ^α     (1/(1+u^2 )) (du/α)  =(2/α)  −(2/α^2 ) arctan(α) ⇒ f^′ (α) = (1/α) −((arctan(α))/α^2 )  ⇒ f(α)= ln∣α∣ −  ∫^α    ((arcrctant)/t^2 ) dt  by parts   ∫     ((arctant)/t^2 )dt = −(1/t) arctant −∫ ((−1)/t)   (dt/(1+t^2 ))  =−(1/t)arctant   + ∫      (dt/(t(1+t^2 )))  =−((arctant)/t) + ∫  ((1/t) −(t/(1+t^2 )))dt  =−((arctant)/t)  +ln∣t∣  −(1/2) ln(1+t^2 ) ⇒  f(α)= ((arctan(α))/α)  +(1/2)ln(1+α^2 ) +c  c =lim_(α→.0) (f(α)−((arctan(α))/α) −(1/2)ln(1+α^2 ))=−1  f(α) =((arctan(α))/α)  +(1/2)ln(1+α^2 ) −1  g(α) = ∫_0 ^1   arctan(αx)dx  =_(αx =t)   ∫_0 ^α     arctant (dt/α)  =(1/α) ∫_0 ^α   arctant dt  = (1/α){   [t arctant]_0 ^α   −∫_0 ^α   (t/(1+t^2 ))dt}  = (1/α){  α arctan(α) −(1/2)ln(1+α^2 )} ⇒  A(α) = ((arctan(α))/α)  +(1/2)ln(1+α^2 ) −1  i{ arctan(α) −(1/(2α))ln(1+α^2 )}
wehave1+i(αx)=1+α2x2(11+α2x2+iαx1+α2x2)=1+α2x2eiθ/cosθ=11+α2x2andsinθ=αx1+α2x2tanθ=αxθ=arctan(αx)ln(1+iαx)=12ln(1+α2x2)+iarctan(αx)A(α)=1201ln(1+α2x2)dx+i01arctan(αx)dx=f(α)+ig(α)2f(α)=012αx21+α2x2dx=2α011+α2x211+α2x2dx=2α2α01dx1+α2x2=αx=u2α2α0α11+u2duα=2α2α2arctan(α)f(α)=1αarctan(α)α2f(α)=lnααarcrctantt2dtbypartsarctantt2dt=1tarctant1tdt1+t2=1tarctant+dtt(1+t2)=arctantt+(1tt1+t2)dt=arctantt+lnt12ln(1+t2)f(α)=arctan(α)α+12ln(1+α2)+cc=limα.0(f(α)arctan(α)α12ln(1+α2))=1f(α)=arctan(α)α+12ln(1+α2)1g(α)=01arctan(αx)dx=αx=t0αarctantdtα=1α0αarctantdt=1α{[tarctant]0α0αt1+t2dt}=1α{αarctan(α)12ln(1+α2)}A(α)=arctan(α)α+12ln(1+α2)1i{arctan(α)12αln(1+α2)}
Commented by abdo mathsup 649 cc last updated on 10/May/18
2) ∫_0 ^1  ln(1+ix)dx =A(1)  =(π/4) +(1/2)ln(2) +i( (π/4) −(1/2) ln(2)) .
2)01ln(1+ix)dx=A(1)=π4+12ln(2)+i(π412ln(2)).
Commented by abdo mathsup 649 cc last updated on 10/May/18
A(1) = (π/4) +(1/2)ln(2) −1 +i( (π/4) −(1/2) ln(2)) .
A(1)=π4+12ln(2)1+i(π412ln(2)).
Answered by tanmay.chaudhury50@gmail.com last updated on 09/May/18
∫_0 ^1 ln(1+iαx)=∫_0 ^1 (1/2)ln(1^2 +α^2 x^2 )+itan^(−1) (((αx)/1))dx  =I_1 +I_2   I_1 =(1/2)∫_0 ^1 (α^2 x^2 −((α^4 x^4 )/2)+((α^6 x^6 )/3)−((α^8 x^8 )/4)+....  dx  using ln(1+x)=x−(x^2 /2)+(x^3 /3)−  =(1/2)∣((α^2 x^3 )/3)−((α^4 x^5 )/(2×5))+((α^6 x^7 )/(3×7))−((α^8 x^9 )/(4×9)).....∣_0 ^1   =(1/2)((α^2 /3)−(α^4 /(10))+(α^6 /(21))−(α^8 /(36))...)  I_2 =∫_0 ^1 itan^(−1) (αx) dx
01ln(1+iαx)=0112ln(12+α2x2)+itan1(αx1)dx=I1+I2I1=1201(α2x2α4x42+α6x63α8x84+.dxusingln(1+x)=xx22+x33=12α2x33α4x52×5+α6x73×7α8x94×9..10=12(α23α410+α621α836)I2=01itan1(αx)dx
Commented by tanmay.chaudhury50@gmail.com last updated on 09/May/18
Answered by tanmay.chaudhury50@gmail.com last updated on 09/May/18
I_2 =∫_0 ^1 itan^(−1) αx dx  =i∫_0 ^1 (αx−((α^3 x^3 )/3)+((α^5 x^5 )/5)....)dx  =i∣(((αx^2 )/2)−((α^3 x^4 )/(3×4))+((α^5 x^6 )/(5×6))....)∣_0 ^1   =i((α/2)−(α^3 /(12))+(α^5 /(30))...)
I2=01itan1αxdx=i01(αxα3x33+α5x55.)dx=i(αx22α3x43×4+α5x65×6.)01=i(α2α312+α530)

Leave a Reply

Your email address will not be published. Required fields are marked *