Question Number 34635 by abdo mathsup 649 cc last updated on 09/May/18

Commented by tanmay.chaudhury50@gmail.com last updated on 09/May/18

Commented by abdo mathsup 649 cc last updated on 10/May/18
![we have 1+i(αx) =(√(1+α^2 x^2 )) ( (1/( (√(1+α^2 x^2 )))) +i((αx)/( (√(1+α^2 x^2 ))))) =(√(1+α^2 x^2 )) e^(iθ) /cosθ =(1/( (√(1+α^2 x^2 )))) and sinθ = ((αx)/( (√(1+α^2 x^2 )))) ⇒ tanθ =αx ⇒θ =arctan(αx) ln(1 +iαx)=(1/2)ln(1+α^2 x^2 ) +i arctan(αx) ⇒ A(α) = (1/2) ∫_0 ^1 ln(1+α^2 x^2 )dx +i ∫_0 ^1 arctan(αx)dx =f(α) +i g(α) 2f^′ (α) = ∫_0 ^1 ((2αx^2 )/(1+α^2 x^2 ))dx = (2/α) ∫_0 ^1 ((1+α^2 x^2 −1)/(1+α^2 x^2 ))dx = (2/α) −(2/α) ∫_0 ^1 (dx/(1+α^2 x^2 )) =_(αx =u) (2/α) −(2/α) ∫_0 ^α (1/(1+u^2 )) (du/α) =(2/α) −(2/α^2 ) arctan(α) ⇒ f^′ (α) = (1/α) −((arctan(α))/α^2 ) ⇒ f(α)= ln∣α∣ − ∫^α ((arcrctant)/t^2 ) dt by parts ∫ ((arctant)/t^2 )dt = −(1/t) arctant −∫ ((−1)/t) (dt/(1+t^2 )) =−(1/t)arctant + ∫ (dt/(t(1+t^2 ))) =−((arctant)/t) + ∫ ((1/t) −(t/(1+t^2 )))dt =−((arctant)/t) +ln∣t∣ −(1/2) ln(1+t^2 ) ⇒ f(α)= ((arctan(α))/α) +(1/2)ln(1+α^2 ) +c c =lim_(α→.0) (f(α)−((arctan(α))/α) −(1/2)ln(1+α^2 ))=−1 f(α) =((arctan(α))/α) +(1/2)ln(1+α^2 ) −1 g(α) = ∫_0 ^1 arctan(αx)dx =_(αx =t) ∫_0 ^α arctant (dt/α) =(1/α) ∫_0 ^α arctant dt = (1/α){ [t arctant]_0 ^α −∫_0 ^α (t/(1+t^2 ))dt} = (1/α){ α arctan(α) −(1/2)ln(1+α^2 )} ⇒ A(α) = ((arctan(α))/α) +(1/2)ln(1+α^2 ) −1 i{ arctan(α) −(1/(2α))ln(1+α^2 )}](https://www.tinkutara.com/question/Q34700.png)
Commented by abdo mathsup 649 cc last updated on 10/May/18

Commented by abdo mathsup 649 cc last updated on 10/May/18

Answered by tanmay.chaudhury50@gmail.com last updated on 09/May/18

Commented by tanmay.chaudhury50@gmail.com last updated on 09/May/18

Answered by tanmay.chaudhury50@gmail.com last updated on 09/May/18
