calculate-A-0-cos-sinx-sin-cosx-x-2-2-dx-from-R- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 48255 by Abdo msup. last updated on 21/Nov/18 calculateAλ=∫0∞cos(λsinx)−sin(λcosx)x2+λ2dxλfromR. Commented by Abdo msup. last updated on 23/Nov/18 wehaveAλ=∫0∞cos(λsinx)x2+λ2dx−∫0∞sin(λcosx)x2+λ2dx=H−Kcase1λ>02H=∫−∞+∞cos(λsinx)x2+λ2dx=Re(∫−∞+∞eiλsinxx2+λ2dx)letφ(z)=eiλsinzz2+λ2⇒φ(z)=eiλsinz(z−iλ)(z+iλ)∫−∞+∞φ(z)dz=2iπRes(φ,iλ)=2iπeiλsin(iλ)2iλ=πλeiλsin(iλ)butsin(iλ)=ei(iλ)−e−i(iλ)2i=eλ−e−λ2⇒∫−∞+∞φ(z)dz=πλeiλeλ−e−λ2=πλ{cos(λ2(eλ−e−λ))+isin(λ2(eλ−e−λ))⇒H=π2λcos(λ2(eλ−e−λ))also2K=∫−∞+∞sin(λcosx)x2+λ2dx=Im(∫−∞+∞eiλcosxx2+λ2dx)but∫−∞+∞eiλcosxx2+λ2dx?=2iπeiλcos(iλ)2iλ=πλeiλcos(iλ)butcos(iλ)=ei(iλ)+e−i(iλ)2=eλ+e−λ2⇒∫−∞+∞eiλcosxx2+λ2dx=πλeiλeλ+e−λ2=πλ{cos(λ2(eλ+e−λ))+isin(λ2(eλ+e−λ))}⇒K=π2λsin(λ2(eλ+e−λ))⇒Aλ=π2λ{cos(λ2(eλ−e−λ)−sin(λ2(eλ+e−λ))}ifλ<0wefollowthesamemethod. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: n-1-3-n-n-3-Next Next post: prove-k-1-sin-2-pik-pik-sin-kx-cos-pik-k-2-pi-4- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.