Menu Close

calculate-A-0-cos-sinx-sin-cosx-x-2-2-dx-from-R-




Question Number 48255 by Abdo msup. last updated on 21/Nov/18
calculate A_λ   =∫_0 ^∞   ((cos(λsinx)−sin(λcosx))/(x^2  +λ^2 ))dx  λ from R.
calculateAλ=0cos(λsinx)sin(λcosx)x2+λ2dxλfromR.
Commented by Abdo msup. last updated on 23/Nov/18
we have A_λ =∫_0 ^∞  ((cos(λsinx))/(x^2  +λ^2 ))dx−∫_0 ^∞  ((sin(λcosx))/(x^2  +λ^2 ))dx  =H−K  case 1  λ>0  2H =∫_(−∞) ^(+∞)  ((cos(λsinx))/(x^2  +λ^2 ))dx=Re(∫_(−∞) ^(+∞)  (e^(iλsinx) /(x^2  +λ^2 ))dx)let  ϕ(z)=(e^(iλsinz) /(z^2  +λ^2 )) ⇒ϕ(z)=(e^(iλsinz) /((z−iλ)(z+iλ)))  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπRes(ϕ,iλ)  =2iπ (e^(iλsin(iλ)) /(2iλ)) =(π/λ) e^(iλsin(iλ))   but sin(iλ)=((e^(i(iλ)) −e^(−i(iλ)) )/(2i))  =((e^λ −e^(−λ) )/2) ⇒∫_(−∞) ^(+∞) ϕ(z)dz =(π/λ) e^(iλ((e^λ −e^(−λ) )/2))   =(π/λ){cos((λ/2)(e^λ −e^(−λ) ))+i sin((λ/2)(e^λ −e^(−λ) )) ⇒  H =(π/(2λ))cos((λ/2)(e^λ −e^(−λ) )) also  2K =∫_(−∞) ^(+∞)    ((sin(λcosx))/(x^2  +λ^2 ))dx =Im( ∫_(−∞) ^(+∞)  (e^(iλcosx) /(x^2  +λ^2 ))dx) but  ∫_(−∞) ^(+∞)    (e^(iλ cosx) /(x^2  +λ^2 ))dx?=2iπ (e^(iλcos(iλ)) /(2iλ)) =(π/λ) e^(iλcos(iλ))  but  cos(iλ) =((e^(i(iλ))  +e^(−i(iλ)) )/2) =((e^λ  +e^(−λ) )/2) ⇒  ∫_(−∞) ^(+∞)   (e^(iλcosx) /(x^2  +λ^2 ))dx =(π/λ) e^(iλ((e^λ  +e^(−λ) )/2))   =(π/λ){cos((λ/2)(e^λ  +e^(−λ) ))+isin((λ/2)(e^λ  +e^(−λ) ))} ⇒  K =(π/(2λ)) sin((λ/2)(e^λ  +e^(−λ) )) ⇒  A_λ =(π/(2λ)){ cos((λ/2)(e^λ  −e^(−λ) )−sin((λ/2)(e^λ  +e^(−λ) ))}  if λ<0 we follow the same method.
wehaveAλ=0cos(λsinx)x2+λ2dx0sin(λcosx)x2+λ2dx=HKcase1λ>02H=+cos(λsinx)x2+λ2dx=Re(+eiλsinxx2+λ2dx)letφ(z)=eiλsinzz2+λ2φ(z)=eiλsinz(ziλ)(z+iλ)+φ(z)dz=2iπRes(φ,iλ)=2iπeiλsin(iλ)2iλ=πλeiλsin(iλ)butsin(iλ)=ei(iλ)ei(iλ)2i=eλeλ2+φ(z)dz=πλeiλeλeλ2=πλ{cos(λ2(eλeλ))+isin(λ2(eλeλ))H=π2λcos(λ2(eλeλ))also2K=+sin(λcosx)x2+λ2dx=Im(+eiλcosxx2+λ2dx)but+eiλcosxx2+λ2dx?=2iπeiλcos(iλ)2iλ=πλeiλcos(iλ)butcos(iλ)=ei(iλ)+ei(iλ)2=eλ+eλ2+eiλcosxx2+λ2dx=πλeiλeλ+eλ2=πλ{cos(λ2(eλ+eλ))+isin(λ2(eλ+eλ))}K=π2λsin(λ2(eλ+eλ))Aλ=π2λ{cos(λ2(eλeλ)sin(λ2(eλ+eλ))}ifλ<0wefollowthesamemethod.

Leave a Reply

Your email address will not be published. Required fields are marked *