Menu Close

calculate-A-0-ln-x-1-x-2-1-x-2-dx-2-calculate-0-1-ln-x-1-x-2-1-x-2-dx-




Question Number 39135 by maxmathsup by imad last updated on 02/Jul/18
calculate A(λ) = ∫_0 ^λ    ((ln(x+(√(1+x^2 ))))/( (√(1+x^2 )))) dx  2) calculate ∫_0 ^1  ((ln(x+(√(1+x^2 ))))/( (√(1+x^2 ))))dx
calculateA(λ)=0λln(x+1+x2)1+x2dx2)calculate01ln(x+1+x2)1+x2dx
Commented by math khazana by abdo last updated on 03/Jul/18
let integrate by parts u^′ =(1/( (√(1+x^2 )))) and v=ln(x+(√(1+x^2 )))  A(λ) =[ln^2 (x+(√(1+x^2 )))]_0 ^λ  −∫_0 ^λ     ((ln(x+(√(1+x^2 ))))/( (√(1+x^2 ))))dx  ⇒2A(λ)=ln^2 (λ+(√(1+λ^2 ))) ⇒  A(λ)=(1/2)ln^2 (λ +(√(1+λ^2 )))  2) ∫_0 ^1    ((ln(1+(√(1+x^2 )))/( (√(1+x^2 )))))dx=A(1)=(1/2)ln^2 (2+(√2)).
letintegratebypartsu=11+x2andv=ln(x+1+x2)A(λ)=[ln2(x+1+x2)]0λ0λln(x+1+x2)1+x2dx2A(λ)=ln2(λ+1+λ2)A(λ)=12ln2(λ+1+λ2)2)01ln(1+1+x21+x2)dx=A(1)=12ln2(2+2).
Commented by math khazana by abdo last updated on 03/Jul/18
A(1)=(1/2)ln^2 (1+(√2))
A(1)=12ln2(1+2)
Answered by tanmay.chaudhury50@gmail.com last updated on 03/Jul/18
    1)t=ln(x+(√(1+x^2 )) )    (dt/dx)=((1+((2x)/(2(√(1+x^2 )) )))/(x+(√(1+x^2 )) ))=(1/( (√(1+x^2 )) ))  ∫_0 ^(ln(λ+(√(1+λ^2 )) )) tdt  ∣ (t^2 /2)∣_0 ^(ln(λ+(√(1+λ^2  ))))   (1/2){ln(λ+(√(1+λ^2 ))) }^2   2)(1/2){ln∣1+(√2) ∣}^2
1)t=ln(x+1+x2)dtdx=1+2x21+x2x+1+x2=11+x20ln(λ+1+λ2)tdtt220ln(λ+1+λ2)12{ln(λ+1+λ2)}22)12{ln1+2}2

Leave a Reply

Your email address will not be published. Required fields are marked *