Menu Close

calculate-A-0-pi-3-du-1-cos-2-u-3-




Question Number 50421 by Abdo msup. last updated on 16/Dec/18
calculate A =∫_0 ^(π/3)     (du/((1+cos^2 u)^3 ))
calculateA=0π3du(1+cos2u)3
Commented by maxmathsup by imad last updated on 18/Dec/18
 we have 1+cos^2 u =1+(1/(1+tan^2 u)) =((2+tan^2 u)/(1+tan^2 u)) ⇒  A =∫_0 ^(π/3)    (du/((((2+tan^2 u)/(1+tan^2 u)))^3 )) =∫_0 ^(π/3)   (((1+tan^2 u)^3 )/((2+tan^2 u)^3 ))  changement tan(u)=x give  A =∫_0 ^(√3)    (((1+x^2 )^3 )/((2+x^2 )^3 )) (dx/((1+x^2 ))) =∫_0 ^(√3)    ((x^4  +2x^2  +1)/((x^2  +2)^3 )) dx let decompose  F(x) =((x^4  +2x^2  +1)/((x^2  +2)^3 ))  F(x)=G(u) =((u^2  +2u +1)/((u+2)^3 )) =(a/(u+2)) +(b/((u+2)^2 )) +(c/((u+2)^3 ))  c =lim_(u→−2) (u+2)^2 G(u) =1  lim_(u→+∞) uG(u) =1 =a ⇒G(u) =(1/(u+2)) +(b/((u+2)^2 )) +(1/((u+2)^3 ))  G(−1) =0 =1 +b +1 =b+2 ⇒b =−2 ⇒G(u)=(1/(u+2)) −(2/((u+2)^2 )) +(1/((u+2)^3 )) ⇒  F(x) = (1/(x^2  +2)) −(2/((x^2  +2)^2 )) +(1/((x^2  +2)^3 )) ⇒  ∫_0 ^(√3)  F(x)dx =∫_0 ^(√3)   (dx/(x^2  +2)) −2 ∫_0 ^(√3)   (dx/((x^2  +2)^2 )) +∫_0 ^(√3)   (dx/((x^2  +2)^3 ))  ∫_0 ^(√3)    (dx/(x^2  +2)) =_(x=(√2)u)     ∫_0 ^((√3)/( (√2)))    (((√2)du)/(2(1+u^2 ))) =(1/( (√2))) arctan(((√3)/( (√2)))).  ∫_0 ^(√3)   (dx/((x^2  +2)^2 )) =_(x=(√2)tanθ)     ∫_0 ^(arctan(((√3)/( (√2)))))     (((√2)(1+tan^2 θ)dθ)/(4(1+tan^2 θ)^2 ))  =((√2)/4)∫_0 ^(arctan(((√3)/( (√2)))))     cos^2 θ dθ =((√2)/4)  ∫_0 ^(arctan(((√3)/( (√2))))) ((1+cos(2θ))/2) dθ  =((√2)/8) arctan(((√3)/( (√2)))) +((√2)/(16)) [sin(2θ)]_0 ^(arctan(((√3)/( (√2)))))   =((√2)/8) arctan(((√3)/( (√2)))) +((√2)/(16)) sin(2arctan(((√3)/( (√2))))).   ...be continued...
wehave1+cos2u=1+11+tan2u=2+tan2u1+tan2uA=0π3du(2+tan2u1+tan2u)3=0π3(1+tan2u)3(2+tan2u)3changementtan(u)=xgiveA=03(1+x2)3(2+x2)3dx(1+x2)=03x4+2x2+1(x2+2)3dxletdecomposeF(x)=x4+2x2+1(x2+2)3F(x)=G(u)=u2+2u+1(u+2)3=au+2+b(u+2)2+c(u+2)3c=limu2(u+2)2G(u)=1limu+uG(u)=1=aG(u)=1u+2+b(u+2)2+1(u+2)3G(1)=0=1+b+1=b+2b=2G(u)=1u+22(u+2)2+1(u+2)3F(x)=1x2+22(x2+2)2+1(x2+2)303F(x)dx=03dxx2+2203dx(x2+2)2+03dx(x2+2)303dxx2+2=x=2u0322du2(1+u2)=12arctan(32).03dx(x2+2)2=x=2tanθ0arctan(32)2(1+tan2θ)dθ4(1+tan2θ)2=240arctan(32)cos2θdθ=240arctan(32)1+cos(2θ)2dθ=28arctan(32)+216[sin(2θ)]0arctan(32)=28arctan(32)+216sin(2arctan(32)).becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *