Menu Close

calculate-A-0-pi-4-cos-8-xdx-and-B-0-pi-4-sin-8-xdx-2-calculate-A-B-and-A-B-3-calculate-A-2-B-2-




Question Number 41677 by math khazana by abdo last updated on 11/Aug/18
calculate A = ∫_0 ^(π/4)  cos^8 xdx and   B= ∫_0 ^(π/4)  sin^8 xdx  2) calculate A +B and A−B  3) calculate A^2  −B^2
calculateA=0π4cos8xdxandB=0π4sin8xdx2)calculateA+BandAB3)calculateA2B2
Commented by math khazana by abdo last updated on 12/Aug/18
let  A_n = ∫_0 ^(π/4)  cos^(2n) xdx   we haveA =A_4   A_(n+1) = ∫_0 ^(π/4)   cos^(2n) (1−sin^2 x)dx  =A_n  −∫_0 ^(π/4)  sin^2 x cos^(2n) xdx  by parts  ∫_0 ^(π/4)  sinx(−sinx)cos^(2n) x dx  = [(1/(2n+1))sinxcos^(2n+1) x ]_0 ^(π/4)  −∫_0 ^(π/4)  (1/(2n+1)) cos^(2n+2) xdx  =(1/(2n+1))( (1/( (√2))))^(2n+2)  −(1/(2n+1)) A_(n+1)  ⇒  (1+(1/(2n+1)))A_(n+1) =A_n    +(1/((2n+1)2^(n+1) )) ⇒  ((2n+2)/(2n+1)) A_(n+1) = A_n  +(1/((2n+1)2^(n+1) )) ⇒  A_(n+1) =((2n+1)/(2n+2)) A_n  + (1/((2n+2)2^(n+1) )) ⇒  A_4 =(7/8) A_3  + (1/(8.2^4 ))  A_3 =(5/6) A_2  + (1/(6.2^3 ))  A_2 = (3/4) A_1  + (1/(4.2^2 ))  A_1 =(1/2) A_0  +(1/4) ⇒  A_4 =(7/8){(5/6) A_2  +(1/(6.2^3 ))} +(1/(8.2^4 ))  = ((35)/(48)) A_2   +(7/(48.2^3 )) +(1/(8.2^4 ))  =((35)/(48)){ (3/4) A_1 +(1/(4.2^2 ))} +(7/(48.2^3 )) +(1/(8.2^4 ))  = ((105)/(192)) A_1  + ((35)/(192.2^2 )) +(7/(48.2^3 )) +(1/(8.2^4 ))  =((105)/(192)){(1/2)A_0  +(1/4)} +((35)/(192.2^2 )) +(7/(48.2^3 )) +(1/(8.2^4 ))  =((105)/(192)){ (π/8) +(1/4)} +((35)/(192.2^2 )) +(7/(48.2^3 )) +(1/(8.2^4 )) =A
letAn=0π4cos2nxdxwehaveA=A4An+1=0π4cos2n(1sin2x)dx=An0π4sin2xcos2nxdxbyparts0π4sinx(sinx)cos2nxdx=[12n+1sinxcos2n+1x]0π40π412n+1cos2n+2xdx=12n+1(12)2n+212n+1An+1(1+12n+1)An+1=An+1(2n+1)2n+12n+22n+1An+1=An+1(2n+1)2n+1An+1=2n+12n+2An+1(2n+2)2n+1A4=78A3+18.24A3=56A2+16.23A2=34A1+14.22A1=12A0+14A4=78{56A2+16.23}+18.24=3548A2+748.23+18.24=3548{34A1+14.22}+748.23+18.24=105192A1+35192.22+748.23+18.24=105192{12A0+14}+35192.22+748.23+18.24=105192{π8+14}+35192.22+748.23+18.24=A
Commented by math khazana by abdo last updated on 12/Aug/18
let B_n = ∫_0 ^(π/4)  sin^(2n) xdx  we have B=B_4   B_(n+1) = ∫_0 ^(π/4)  sin^(2n) (1−cos^2 x)dx  = ∫_0 ^(π/4)  sin^(2n) xdx − ∫_0 ^(π/4)  cosx (cosx)sin^(2n) xdx  by  parts   ∫_0 ^(π/4)  cosx(cosx)sin^(2n) xdx=[(1/(2n+1))cosxsin^(2n+1) x]_0 ^(π/4)   − ∫_0 ^(π/4)  (−sinx) (1/(2n+1)) sin^(2n+1) xdx  =  (1/((2n+1)))((1/( (√2))))^(2n+2)   +(1/(2n+1)) ∫_0 ^(π/4)  sin^(2n+2) xdx  = (1/((2n+1)2^(n+1) ))  +(1/(2n+1)) B_(n+1)   ⇒  B_(n+1) =B_n  − (1/((2n+1)2^(n+1) )) −(1/(2n+1)) B_(n+1)  ⇒  (1+(1/(2n+1)))B_(n+1) =B_n −(1/((2n+1)2^(n+1) )) ⇒  ((2n+2)/(2n+1)) B_(n+1) =B_n −(1/((2n+1)2^(n+1) )) ⇒  B_(n+1) =((2n+1)/(2n+2)) B_n  − (1/((2n+2)2^(n+1) ))  ...be continued...
letBn=0π4sin2nxdxwehaveB=B4Bn+1=0π4sin2n(1cos2x)dx=0π4sin2nxdx0π4cosx(cosx)sin2nxdxbyparts0π4cosx(cosx)sin2nxdx=[12n+1cosxsin2n+1x]0π40π4(sinx)12n+1sin2n+1xdx=1(2n+1)(12)2n+2+12n+10π4sin2n+2xdx=1(2n+1)2n+1+12n+1Bn+1Bn+1=Bn1(2n+1)2n+112n+1Bn+1(1+12n+1)Bn+1=Bn1(2n+1)2n+12n+22n+1Bn+1=Bn1(2n+1)2n+1Bn+1=2n+12n+2Bn1(2n+2)2n+1becontinued
Answered by ajfour last updated on 11/Aug/18
A=∫_0 ^(  π/4) cos^8 xdx     =(1/(16))∫_0 ^(  π/4) (1+cos 2x)^4 dx    =(1/(16))∫_0 ^(  π/4) (1+4cos 2x+6cos^2 2x                       +4cos^3 2x+cos^4 2x)dx   =(π/(64))+((4sin 2x)/(32))∣_0 ^(π/4) +(3/(16))∫_0 ^(  π/4) (1+cos 4x)dx           +(1/(16))∫_0 ^(  π/4) (cos 6x+3cos 2x)dx           +(1/(64))∫_0 ^(  π/4) (1+cos 4x)^2 dx  =(π/(64))+(1/8)+((3π)/(64))+0−(1/(96))+(3/(32))+(π/(256))            +0+(1/(128))∫_0 ^(  π/4) (1+cos 8x)dx  = ((17π)/(256))+((20)/(96))+(π/(512))   ⇒   A= ((35π)/(512))+((20)/(96))  ________________________      B=∫_0 ^(  π/4) sin^8 xdx      =(1/(16))∫_0 ^(  π/4) (1−cos 2x)^4 dx    =(1/(16))∫_0 ^(  π/4) (1−4cos 2x+6cos^2 2x                     −4cos^3 2x+cos^4 2x)dx     =(π/(64))−(1/8)+((3π)/(64))+(1/(96))−(3/(32))+(π/(256))+(π/(512))  ⇒    B = ((35π)/(512))−((20)/(96))  ________________________  A+B = ((35π)/(256))  A−B = (5/(12))  A^2 −B^2  = ((175π)/(3072)) .
A=0π/4cos8xdx=1160π/4(1+cos2x)4dx=1160π/4(1+4cos2x+6cos22x+4cos32x+cos42x)dx=π64+4sin2x320π/4+3160π/4(1+cos4x)dx+1160π/4(cos6x+3cos2x)dx+1640π/4(1+cos4x)2dx=π64+18+3π64+0196+332+π256+0+11280π/4(1+cos8x)dx=17π256+2096+π512A=35π512+2096________________________B=0π/4sin8xdx=1160π/4(1cos2x)4dx=1160π/4(14cos2x+6cos22x4cos32x+cos42x)dx=π6418+3π64+196332+π256+π512B=35π5122096________________________A+B=35π256AB=512A2B2=175π3072.
Answered by tanmay.chaudhury50@gmail.com last updated on 11/Aug/18
method 1  cos^8 x+sin^8 x  =(cos^4 x+sin^4 x)^2 −2cos^4 xsin^4 x  ={(cos^2 x+sin^2 x)^2 −2cos^2 x.sin^2 x}^2 −(1/8)×(2sinxcosx)^4   ={1−(1/2)(2sinxcosx)^2 }^2 −(1/8)×(sin2x)^4   ={((2−sin^2 2x)/2)}^2 −(1/8)(((1−cos4x)/2))^2   ={((2−((1−cos4x)/2))/2)}^2 −(1/8)(((1−2cos4x+((1+cos8x)/2))/4))  ={((4−1+cos4x)/4)}^2 −(1/8)(((2−4cos4x+1+cos8x)/8))  ={((9+6cos4x+((1+cos8x)/2))/(16))}−(((cos8x−4cos4x+3)/(64)))  ={((18+12cos4x+1+cos8x)/(32))}−(((cos8x−4cos4x+3)/(64)))  =(((cos8x+12cos4x+19)/(32)))−(((cos8x−4cos4x+3)/(64)))  =(((2cos8x+24cos4x+38−cos8x+4cos4x−3)/(64)))  =(((cos8x+28cos4x+35)/(64)))  so A+B=  ∫_0 ^(Π/4) ((cos8x+28cos4x+35)/(64))dx  =(1/(64))∣(((sin8x)/8)+((28sin4x)/4)+35x)∣_0 ^(Π/4)   =(1/(64))(((sin2Π)/8)+((28sinΠ)/4)+((35×(Π/4))/))  =(1/(64))×((35Π)/4)=((35Π)/(256))  pls check  i shall solve it by gamma beta function later
method1cos8x+sin8x=(cos4x+sin4x)22cos4xsin4x={(cos2x+sin2x)22cos2x.sin2x}218×(2sinxcosx)4={112(2sinxcosx)2}218×(sin2x)4={2sin22x2}218(1cos4x2)2={21cos4x22}218(12cos4x+1+cos8x24)={41+cos4x4}218(24cos4x+1+cos8x8)={9+6cos4x+1+cos8x216}(cos8x4cos4x+364)={18+12cos4x+1+cos8x32}(cos8x4cos4x+364)=(cos8x+12cos4x+1932)(cos8x4cos4x+364)=(2cos8x+24cos4x+38cos8x+4cos4x364)=(cos8x+28cos4x+3564)soA+B=0Π4cos8x+28cos4x+3564dx=164(sin8x8+28sin4x4+35x)0Π4=164(sin2Π8+28sinΠ4+35×Π4)=164×35Π4=35Π256plscheckishallsolveitbygammabetafunctionlater

Leave a Reply

Your email address will not be published. Required fields are marked *