Question Number 41677 by math khazana by abdo last updated on 11/Aug/18

Commented by math khazana by abdo last updated on 12/Aug/18
![let A_n = ∫_0 ^(π/4) cos^(2n) xdx we haveA =A_4 A_(n+1) = ∫_0 ^(π/4) cos^(2n) (1−sin^2 x)dx =A_n −∫_0 ^(π/4) sin^2 x cos^(2n) xdx by parts ∫_0 ^(π/4) sinx(−sinx)cos^(2n) x dx = [(1/(2n+1))sinxcos^(2n+1) x ]_0 ^(π/4) −∫_0 ^(π/4) (1/(2n+1)) cos^(2n+2) xdx =(1/(2n+1))( (1/( (√2))))^(2n+2) −(1/(2n+1)) A_(n+1) ⇒ (1+(1/(2n+1)))A_(n+1) =A_n +(1/((2n+1)2^(n+1) )) ⇒ ((2n+2)/(2n+1)) A_(n+1) = A_n +(1/((2n+1)2^(n+1) )) ⇒ A_(n+1) =((2n+1)/(2n+2)) A_n + (1/((2n+2)2^(n+1) )) ⇒ A_4 =(7/8) A_3 + (1/(8.2^4 )) A_3 =(5/6) A_2 + (1/(6.2^3 )) A_2 = (3/4) A_1 + (1/(4.2^2 )) A_1 =(1/2) A_0 +(1/4) ⇒ A_4 =(7/8){(5/6) A_2 +(1/(6.2^3 ))} +(1/(8.2^4 )) = ((35)/(48)) A_2 +(7/(48.2^3 )) +(1/(8.2^4 )) =((35)/(48)){ (3/4) A_1 +(1/(4.2^2 ))} +(7/(48.2^3 )) +(1/(8.2^4 )) = ((105)/(192)) A_1 + ((35)/(192.2^2 )) +(7/(48.2^3 )) +(1/(8.2^4 )) =((105)/(192)){(1/2)A_0 +(1/4)} +((35)/(192.2^2 )) +(7/(48.2^3 )) +(1/(8.2^4 )) =((105)/(192)){ (π/8) +(1/4)} +((35)/(192.2^2 )) +(7/(48.2^3 )) +(1/(8.2^4 )) =A](https://www.tinkutara.com/question/Q41728.png)
Commented by math khazana by abdo last updated on 12/Aug/18
![let B_n = ∫_0 ^(π/4) sin^(2n) xdx we have B=B_4 B_(n+1) = ∫_0 ^(π/4) sin^(2n) (1−cos^2 x)dx = ∫_0 ^(π/4) sin^(2n) xdx − ∫_0 ^(π/4) cosx (cosx)sin^(2n) xdx by parts ∫_0 ^(π/4) cosx(cosx)sin^(2n) xdx=[(1/(2n+1))cosxsin^(2n+1) x]_0 ^(π/4) − ∫_0 ^(π/4) (−sinx) (1/(2n+1)) sin^(2n+1) xdx = (1/((2n+1)))((1/( (√2))))^(2n+2) +(1/(2n+1)) ∫_0 ^(π/4) sin^(2n+2) xdx = (1/((2n+1)2^(n+1) )) +(1/(2n+1)) B_(n+1) ⇒ B_(n+1) =B_n − (1/((2n+1)2^(n+1) )) −(1/(2n+1)) B_(n+1) ⇒ (1+(1/(2n+1)))B_(n+1) =B_n −(1/((2n+1)2^(n+1) )) ⇒ ((2n+2)/(2n+1)) B_(n+1) =B_n −(1/((2n+1)2^(n+1) )) ⇒ B_(n+1) =((2n+1)/(2n+2)) B_n − (1/((2n+2)2^(n+1) )) ...be continued...](https://www.tinkutara.com/question/Q41729.png)
Answered by ajfour last updated on 11/Aug/18

Answered by tanmay.chaudhury50@gmail.com last updated on 11/Aug/18
