Menu Close

calculate-A-3-dx-x-3-x-2-4-gt-0-




Question Number 85641 by abdomathmax last updated on 23/Mar/20
calculate A_λ =∫_3 ^∞   (dx/((x+λ)^3 (x−2)^4 ))   (λ>0)
calculateAλ=3dx(x+λ)3(x2)4(λ>0)
Commented by mathmax by abdo last updated on 24/Mar/20
A_λ  =∫_3 ^(+∞)  (dx/((((x+λ)/(x−2)))^3  (x−2)^7 )) changement ((x+λ)/(x−2))=t give  x+λ =tx−2t ⇒(1−t)x=−2t−λ ⇒x=((−2t−λ)/(1−t)) =((2t+λ)/(t−1)) ⇒  (dx/dt) =((2(t−1)−(2t+λ))/((t−1)^2 )) =((2t−2−2t−λ)/((t−1)^2 )) =((−2−λ)/((t−1)^2 ))  x−2 =((2t+λ)/(t−1))−2 =((2t+λ−2t+2)/(t−1)) =((λ+2)/(t−1)) ⇒  A_λ =− ∫_(3+λ) ^1  (1/(t^3 (((λ+2)/(t−1)))^7 ))×((λ+2)/((t−1)^2 ))dt  =(1/((λ+2)^6 ))∫_1 ^(3+λ)     (dt/(t^3 (((λ+2)/(t−1)))^(−5) )) =(1/((λ+2)))∫_1 ^(3+λ)  (((t−1)^5 )/t^3 )dt ⇒  (λ+2)A_λ  =∫_1 ^(3+λ)  ((Σ_(k=0) ^5  C_5 ^k  t^k (−1)^(5−k) )/t^3 )dt  =−∫_1 ^(3+λ)  Σ_(k=0) ^5  (−1)^k  C_5 ^k  t^(k−3)  dt  =−Σ_(k=0) ^5  (−1)^k C_5 ^k   ∫_1 ^(3+λ)   t^(k−3)  dt  =−Σ_(k=0 and k≠2) ^5  (−1)^k  C_5 ^k    [(1/(k−2))t^(k−2) ]_1 ^(3+λ)  −C_5 ^2  ∫_1 ^(3+λ)  (dt/t)  =−Σ_(k=0) ^5  (((−1)^k  C_5 ^k )/(k−2)){ (3+λ)^(k−2) −1}−C_5 ^2 {ln∣3+λ∣} ⇒  A_λ =−(1/(λ+2))Σ_(k=0and k≠2) ^5    (((−1)^k  C_5 ^k )/(k−2)){(3+λ)^(k−2) −1}  −(1/(λ+2)) C_5 ^2 ln∣3+λ∣ .
Aλ=3+dx(x+λx2)3(x2)7changementx+λx2=tgivex+λ=tx2t(1t)x=2tλx=2tλ1t=2t+λt1dxdt=2(t1)(2t+λ)(t1)2=2t22tλ(t1)2=2λ(t1)2x2=2t+λt12=2t+λ2t+2t1=λ+2t1Aλ=3+λ11t3(λ+2t1)7×λ+2(t1)2dt=1(λ+2)613+λdtt3(λ+2t1)5=1(λ+2)13+λ(t1)5t3dt(λ+2)Aλ=13+λk=05C5ktk(1)5kt3dt=13+λk=05(1)kC5ktk3dt=k=05(1)kC5k13+λtk3dt=k=0andk25(1)kC5k[1k2tk2]13+λC5213+λdtt=k=05(1)kC5kk2{(3+λ)k21}C52{ln3+λ}Aλ=1λ+2k=0andk25(1)kC5kk2{(3+λ)k21}1λ+2C52ln3+λ.
Commented by mathmax by abdo last updated on 24/Mar/20
λ≠−2
λ2

Leave a Reply

Your email address will not be published. Required fields are marked *