Menu Close

calculate-A-dt-sin-t-by-using-u-cos-t-




Question Number 169249 by mathocean1 last updated on 26/Apr/22
calculate A=∫(dt/(sin(t))) by using  u=cos(t)
calculateA=dtsin(t)byusingu=cos(t)
Commented by infinityaction last updated on 26/Apr/22
       A = ∫((sin t)/(sin^2 t))dt           A = ∫((sin t)/(1−cos^2 t))dt         u = cos t ⇒ −du = sin tdt            A = −∫(du/(1−u^2 )) ⇒  −∫(du/((1−u)(1+u)))            A  = ((−1)/2){∫(du/(1−u))+∫ (du/(1+u))}            A = ((−1)/2){−log (1−u)+log (1+u)} +c            A  = (1/2)log∣ ((1−u)/(1+u)) ∣+ c             A = (1/2)log ∣((1−cos t)/(1+cos t))∣ +c            A = (1/2)log ∣tan^2 (t/2)∣ + c            A = log ∣tan (t/2)∣ + c
A=sintsin2tdtA=sint1cos2tdtu=costdu=sintdtA=du1u2du(1u)(1+u)A=12{du1u+du1+u}A=12{log(1u)+log(1+u)}+cA=12log1u1+u+cA=12log1cost1+cost+cA=12logtan2t2+cA=logtant2+c

Leave a Reply

Your email address will not be published. Required fields are marked *