Menu Close

calculate-A-m-0-sin-mx-e-2pix-1-dx-with-m-gt-0-




Question Number 53600 by maxmathsup by imad last updated on 23/Jan/19
calculate A_m =∫_0 ^∞    ((sin(mx))/(e^(2πx) −1)) dx  with m>0
calculateAm=0sin(mx)e2πx1dxwithm>0
Commented by maxmathsup by imad last updated on 24/Jan/19
we have A_m =∫_0 ^∞   ((e^(−2πx)  sin(mx))/(1−e^(−2πx) )) dx =Im(∫_0 ^∞   ((e^(−2πx) e^(imx) )/(1−e^(−2πx) ))dx) but  ∫_0 ^∞    (e^(−(2π−im)x) /(1−e^(−2πx) ))dx =∫_0 ^∞  e^(−(2π−im)x) (Σ_(p=0) ^∞  e^(−2πp x) )  =Σ_(p=0) ^∞  ∫_0 ^∞ e^(−(2π−im+2pπ)x) dx =Σ_(p=0) ^∞  [−(1/(2π−im+2pπ)) e^(−(2π−im+2pπ)x) ]^(+∞) _0   =Σ_(p=0) ^∞    (1/((2+2p)π −im)) =Σ_(p=0) ^∞   (((2+2p)π+im)/((2+2p)^2 π^2  +m^2 )) ⇒  A_m =Σ_(p=0) ^∞     (m/(4(p+1)^2 π^2  +m^2 ))   and A_m  can be calculated by fourier series  ....be continued...
wehaveAm=0e2πxsin(mx)1e2πxdx=Im(0e2πxeimx1e2πxdx)but0e(2πim)x1e2πxdx=0e(2πim)x(p=0e2πpx)Missing \left or extra \right=p=01(2+2p)πim=p=0(2+2p)π+im(2+2p)2π2+m2Am=p=0m4(p+1)2π2+m2andAmcanbecalculatedbyfourierseries.becontinued

Leave a Reply

Your email address will not be published. Required fields are marked *