Menu Close

calculate-A-n-0-1-1-t-2-n-dt-with-n-integr-natural-




Question Number 41518 by maxmathsup by imad last updated on 08/Aug/18
calculate  A_n = ∫_0 ^1 (1−t^2 )^n dt   with n integr natural
calculateAn=01(1t2)ndtwithnintegrnatural
Answered by alex041103 last updated on 09/Aug/18
We know that  (a+b)^n =Σ_(k=0) ^n  ((k),(n) )a^(n−k) b^k   ⇒(1−t^2 )^n =Σ_(k=0) ^n (−1)^k  ((k),(n) )t^(2k)   ⇒A_n =∫_(  0) ^1 [ Σ_(k=0) ^n (−1)^k  ((k),(n) )t^(2k)  ]dt=  =Σ_(k=0) ^n  [(−1)^k  ((k),(n) ) ∫_(   0) ^1 t^(2k) dt]=  =Σ_(k=0) ^n  (((−1)^k  )/(2k+1)) ((k),(n) )
Weknowthat(a+b)n=nk=0(kn)ankbk(1t2)n=nk=0(1)k(kn)t2kAn=10[nk=0(1)k(kn)t2k]dt==nk=0[(1)k(kn)10t2kdt]==nk=0(1)k2k+1(kn)
Commented by tanmay.chaudhury50@gmail.com last updated on 10/Aug/18
excellent...
excellent
Answered by math khazana by abdo last updated on 09/Aug/18
we have A_(n+1) =∫_0 ^1 (1−t^2 )^(n+1) dt  =∫_0 ^1 (1−t^2 )^n (1−t^2 )dt= ∫_0 ^1 (1−t^2 )^n  −∫_0 ^1 t^2 (1−t^2 )^n dt  =A_n  −∫_0 ^1  t^2 (1−t^2 )^n dt by parts  ∫_0 ^1 t^2 (1−t^2 )^n  dt =−(1/2) ∫_0 ^1  t(−2t)(1−t^2 )^n dt  =−(1/2){  [  (t/(n+1))(1−t^2 )^(n+1) ]_0 ^1  −∫_0 ^1  (1/(n+1))(1−t^2 )^(n+1) dt}  =(1/(2(n+1))) A_(n+1)  ⇒(1−(1/(2(n+1))))A_(n+1) =A_n  ⇒  ((2n+1)/(2n+2)) A_(n+1) = A_n  ⇒A_(n+1) =((2n+2)/(2n+1)) A_n   ⇒  Π_(k=0) ^(n−1)  A_(k+1) =Π_(k=0) ^(n−1)   ((2k+2)/(2k+1)) Π_(k=0) ^(n−1)  A_n  ⇒  A_n = Π_(k=0) ^(n−1)    ((2k+2)/(2k+1)) A_(0 )      but A_0 =1 ⇒  A_n =((2.4.8.....(2n))/(1.3.5......(2n−1))) =((2^n (n!) 2.4.8.....(2n))/(1.2.3.4.5.....(2n)))  =((2^(2n) (n!)^2 )/((2n)!)) .
wehaveAn+1=01(1t2)n+1dt=01(1t2)n(1t2)dt=01(1t2)n01t2(1t2)ndt=An01t2(1t2)ndtbyparts01t2(1t2)ndt=1201t(2t)(1t2)ndt=12{[tn+1(1t2)n+1]01011n+1(1t2)n+1dt}=12(n+1)An+1(112(n+1))An+1=An2n+12n+2An+1=AnAn+1=2n+22n+1Ank=0n1Ak+1=k=0n12k+22k+1k=0n1AnAn=k=0n12k+22k+1A0butA0=1An=2.4.8..(2n)1.3.5(2n1)=2n(n!)2.4.8..(2n)1.2.3.4.5..(2n)=22n(n!)2(2n)!.
Commented by alex041103 last updated on 10/Aug/18
Perfect! Deserves a like!
Perfect!Deservesalike!
Answered by tanmay.chaudhury50@gmail.com last updated on 10/Aug/18
let t=sin∝  dt=cos∝d∝  ∫_0 ^(Π/2) cos^(2n) ∝cos∝ d∝  ∫_0 ^(Π/2) cos^(2n+1) ∝.sin^0 ∝ d∝  ∫_0 ^(Π/2) cos^(2(n+1)−1) .sin^(2.(1/2)−1) ∝d∝  ((⌈(2n+2)⌈((1/2)))/(2⌈(2n+2+(1/2))))  ⌈(n)=gamma function
lett=sindt=cosd0Π2cos2ncosd0Π2cos2n+1.sin0d0Π2cos2(n+1)1.sin2.121d(2n+2)(12)2(2n+2+12)(n)=gammafunction
Commented by tanmay.chaudhury50@gmail.com last updated on 10/Aug/18

Leave a Reply

Your email address will not be published. Required fields are marked *