Question Number 41518 by maxmathsup by imad last updated on 08/Aug/18

Answered by alex041103 last updated on 09/Aug/18
![We know that (a+b)^n =Σ_(k=0) ^n ((k),(n) )a^(n−k) b^k ⇒(1−t^2 )^n =Σ_(k=0) ^n (−1)^k ((k),(n) )t^(2k) ⇒A_n =∫_( 0) ^1 [ Σ_(k=0) ^n (−1)^k ((k),(n) )t^(2k) ]dt= =Σ_(k=0) ^n [(−1)^k ((k),(n) ) ∫_( 0) ^1 t^(2k) dt]= =Σ_(k=0) ^n (((−1)^k )/(2k+1)) ((k),(n) )](https://www.tinkutara.com/question/Q41542.png)
Commented by tanmay.chaudhury50@gmail.com last updated on 10/Aug/18

Answered by math khazana by abdo last updated on 09/Aug/18
![we have A_(n+1) =∫_0 ^1 (1−t^2 )^(n+1) dt =∫_0 ^1 (1−t^2 )^n (1−t^2 )dt= ∫_0 ^1 (1−t^2 )^n −∫_0 ^1 t^2 (1−t^2 )^n dt =A_n −∫_0 ^1 t^2 (1−t^2 )^n dt by parts ∫_0 ^1 t^2 (1−t^2 )^n dt =−(1/2) ∫_0 ^1 t(−2t)(1−t^2 )^n dt =−(1/2){ [ (t/(n+1))(1−t^2 )^(n+1) ]_0 ^1 −∫_0 ^1 (1/(n+1))(1−t^2 )^(n+1) dt} =(1/(2(n+1))) A_(n+1) ⇒(1−(1/(2(n+1))))A_(n+1) =A_n ⇒ ((2n+1)/(2n+2)) A_(n+1) = A_n ⇒A_(n+1) =((2n+2)/(2n+1)) A_n ⇒ Π_(k=0) ^(n−1) A_(k+1) =Π_(k=0) ^(n−1) ((2k+2)/(2k+1)) Π_(k=0) ^(n−1) A_n ⇒ A_n = Π_(k=0) ^(n−1) ((2k+2)/(2k+1)) A_(0 ) but A_0 =1 ⇒ A_n =((2.4.8.....(2n))/(1.3.5......(2n−1))) =((2^n (n!) 2.4.8.....(2n))/(1.2.3.4.5.....(2n))) =((2^(2n) (n!)^2 )/((2n)!)) .](https://www.tinkutara.com/question/Q41546.png)
Commented by alex041103 last updated on 10/Aug/18

Answered by tanmay.chaudhury50@gmail.com last updated on 10/Aug/18

Commented by tanmay.chaudhury50@gmail.com last updated on 10/Aug/18
