calculate-A-n-0-1-cos-narcosx-dx-with-n-integr-natural- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 79646 by abdomathmax last updated on 27/Jan/20 calculateAn=∫01cos(narcosx)dxwithnintegrnatural Commented by abdomathmax last updated on 12/Mar/20 changementarcosx=tgivex=cost⇒An=∫π20cos(nt)(−sint)dt=∫0π2sintcos(nt)dtwehavesintcos(nt)=cos(π2−t)cos(nt)=12{cos(π2−t+nt)+cos(nt−π2+t)}=12{cos((n−1)t+π2)+cos(π2−(n+1)t)=12{−sin(n−1)t+sin(n+1)t}⇒An=12∫0π2sin(n+1)tdt−12∫0π2sin(n−1)dt=−12(n+1)[cos(n+1)t]0π2+12(n−1)[cos(n−1)t]0π2=−12(n+1){cos(n+1)π2−1}+12(n−1){cos(n−1)π2−1}(n≠1)A1=∫01xdx=12 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: find-0-1-dx-x-x-1-3-Next Next post: given-a-ar-ar-2-ar-3-is-a-GPwith-n-r-lt-1-if-a-x-1-x-2-ar-x-3-x-4-x-5-x-6-ar-2-x-7-x-8-x-9-x-10-x-11-x-12-ar-3-where-a-x-1-x-2-ar-AP-ar-x-3-x-4-x-5-x Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.