Menu Close

calculate-A-n-0-1-cos-narcosx-dx-with-n-integr-natural-




Question Number 79646 by abdomathmax last updated on 27/Jan/20
calculate  A_n =∫_0 ^1  cos(narcosx)dx  with n integr natural
calculateAn=01cos(narcosx)dxwithnintegrnatural
Commented by abdomathmax last updated on 12/Mar/20
changement arcosx=t give x=cost ⇒  A_n =∫_(π/2) ^0  cos(nt)(−sint)dt  =∫_0 ^(π/2)  sint cos(nt)dt  we have sint cos(nt)  =cos((π/2)−t)cos(nt) =(1/2){ cos((π/2)−t+nt)+cos(nt−(π/2)+t)}  =(1/2){ cos((n−1)t+(π/2))+cos((π/2)−(n+1)t)  =(1/2){ −sin(n−1)t  +sin(n+1)t} ⇒  A_n =(1/2)∫_0 ^(π/2)  sin(n+1)t dt−(1/2)∫_0 ^(π/2)  sin(n−1)dt  =−(1/(2(n+1)))[cos(n+1)t]_0 ^(π/2)  +(1/(2(n−1)))[cos(n−1)t]_0 ^(π/2)   =−(1/(2(n+1))){ cos(n+1)(π/2)−1}  +(1/(2(n−1))){ cos(n−1)(π/2)−1}   (n≠1)  A_1 =∫_0 ^1 xdx =(1/2)
changementarcosx=tgivex=costAn=π20cos(nt)(sint)dt=0π2sintcos(nt)dtwehavesintcos(nt)=cos(π2t)cos(nt)=12{cos(π2t+nt)+cos(ntπ2+t)}=12{cos((n1)t+π2)+cos(π2(n+1)t)=12{sin(n1)t+sin(n+1)t}An=120π2sin(n+1)tdt120π2sin(n1)dt=12(n+1)[cos(n+1)t]0π2+12(n1)[cos(n1)t]0π2=12(n+1){cos(n+1)π21}+12(n1){cos(n1)π21}(n1)A1=01xdx=12

Leave a Reply

Your email address will not be published. Required fields are marked *