Menu Close

calculate-A-n-0-1-sin-nx-e-2x-dx-with-n-integr-natural-




Question Number 47651 by prof Abdo imad last updated on 12/Nov/18
calculate  A_n =∫_0 ^1   sin([nx])e^(−2x) dx with n  integr natural .
calculateAn=01sin([nx])e2xdxwithnintegrnatural.
Commented by maxmathsup by imad last updated on 13/Nov/18
we have A_n =Σ_(k=0) ^(n−1)  ∫_(k/n) ^((k+1)/n)  sin([nx])e^(−2x) dx  =Σ_(k=0) ^(n−1)  ∫_(k/n) ^((k+1)/n)  sin(k)e^(−2x) dx =Σ_(k=0) ^n  sin(k)∫_(k/n) ^((k+1)/n)  e^(−2x) dx  =−(1/2)Σ_(k=0) ^(n−1)  sin(k)( e^(−2((k+1)/n)) −e^((−2k)/n) )  =(1/2) Σ_(k=0) ^(n−1)  e^((−2k)/n)  −(1/2)Σ_(k=0) ^(n−1)  e^(−2((k+1)/n))  sin(k)  =((1−e^(−(2/n)) )/2) Σ_(k=0) ^(n−1)  e^((−2k)/n)  sin(k) but Σ_(k=0) ^(n−)  e^((−2k)/n)  sink =Im(Σ_(k=0) ^(n−1)  e^(ik−(2/n)k) ) and  Σ_(k=0) ^(n−1)  e^(ik−(2/n)k)  =Σ_(k=0) ^(n−1)  e^((i−(2/n))k)  =((1−(e^((i−(2/n))) )^n )/(1−e^(i−(2/n)) )) =((1−e^(−2)  e^(in) )/(1−e^(−(2/n))  e^i ))  =((1−e^(−2) cosn −ie^(−2) sin(n))/(1−e^(−(2/n)) cos(1)−i e^(−(2/n)) sin(1)))  =(((1−e^(−2) cos(n)−i e^(−2) sinn)(1−e^(−(2/n)) cos(1)+i e^(−(2/n)) sin(1)))/((1−e^(−2) cos(1))^2  +e^(−(4/n)) sin^2 (1)))  =(((1−e^(−2) cos(n))(1−e^(−(2/n)) cos(1))+i(1−e^(−2) cos(n))e^(−(2/n)) sin(1)−ie^(−2) sin(n)(1−e^(−(2/n)) cos(1))+e^(4/n) sin(n)sin(1))/((1−e^(−2) cos(1))^2  +e^(−(4/n))  sin^2 (1)))  so the value of  A_n  is clear determined after extracting Im(Σ....).
wehaveAn=k=0n1knk+1nsin([nx])e2xdx=k=0n1knk+1nsin(k)e2xdx=k=0nsin(k)knk+1ne2xdx=12k=0n1sin(k)(e2k+1ne2kn)=12k=0n1e2kn12k=0n1e2k+1nsin(k)=1e2n2k=0n1e2knsin(k)butk=0ne2knsink=Im(k=0n1eik2nk)andk=0n1eik2nk=k=0n1e(i2n)k=1(e(i2n))n1ei2n=1e2ein1e2nei=1e2cosnie2sin(n)1e2ncos(1)ie2nsin(1)=(1e2cos(n)ie2sinn)(1e2ncos(1)+ie2nsin(1))(1e2cos(1))2+e4nsin2(1)=(1e2cos(n))(1e2ncos(1))+i(1e2cos(n))e2nsin(1)ie2sin(n)(1e2ncos(1))+e4nsin(n)sin(1)(1e2cos(1))2+e4nsin2(1)sothevalueofAniscleardeterminedafterextractingIm(Σ.).
Answered by tanmay.chaudhury50@gmail.com last updated on 13/Nov/18
∫_0 ^(1/n) sin([nx])e^(−2x) dx+∫_(1/n) ^1 sin([nx])e^(−2x) dx  ∫_0 ^(1/n) sin(0)e^(−2x) dx+sin(1)∫_(1/n) ^1 e^(−2x) dx  sin(1)×∣(e^(−2x) /(−2))∣_(1/n) ^1   sin(1)×(((e^(−2) −e^((−2)/n) )/(−2)))
01nsin([nx])e2xdx+1n1sin([nx])e2xdx01nsin(0)e2xdx+sin(1)1n1e2xdxsin(1)×e2x21n1sin(1)×(e2e2n2)

Leave a Reply

Your email address will not be published. Required fields are marked *