calculate-A-n-0-1-sin-nx-e-2x-dx-with-n-integr-natural- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 47651 by prof Abdo imad last updated on 12/Nov/18 calculateAn=∫01sin([nx])e−2xdxwithnintegrnatural. Commented by maxmathsup by imad last updated on 13/Nov/18 wehaveAn=∑k=0n−1∫knk+1nsin([nx])e−2xdx=∑k=0n−1∫knk+1nsin(k)e−2xdx=∑k=0nsin(k)∫knk+1ne−2xdx=−12∑k=0n−1sin(k)(e−2k+1n−e−2kn)=12∑k=0n−1e−2kn−12∑k=0n−1e−2k+1nsin(k)=1−e−2n2∑k=0n−1e−2knsin(k)but∑k=0n−e−2knsink=Im(∑k=0n−1eik−2nk)and∑k=0n−1eik−2nk=∑k=0n−1e(i−2n)k=1−(e(i−2n))n1−ei−2n=1−e−2ein1−e−2nei=1−e−2cosn−ie−2sin(n)1−e−2ncos(1)−ie−2nsin(1)=(1−e−2cos(n)−ie−2sinn)(1−e−2ncos(1)+ie−2nsin(1))(1−e−2cos(1))2+e−4nsin2(1)=(1−e−2cos(n))(1−e−2ncos(1))+i(1−e−2cos(n))e−2nsin(1)−ie−2sin(n)(1−e−2ncos(1))+e4nsin(n)sin(1)(1−e−2cos(1))2+e−4nsin2(1)sothevalueofAniscleardeterminedafterextractingIm(Σ….). Answered by tanmay.chaudhury50@gmail.com last updated on 13/Nov/18 ∫01nsin([nx])e−2xdx+∫1n1sin([nx])e−2xdx∫01nsin(0)e−2xdx+sin(1)∫1n1e−2xdxsin(1)×∣e−2x−2∣1n1sin(1)×(e−2−e−2n−2) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: a-b-c-N-such-that-a-3-b-b-3-c-Q-show-that-a-2-b-2-c-2-a-b-c-Z-Next Next post: Solve-2cos-2-x-2-3cos-x-2-1-0- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.