Menu Close

calculate-A-n-0-dx-x-2-1-n-n-integr-and-n-1-




Question Number 128952 by mathmax by abdo last updated on 11/Jan/21
calculate A_n =∫_0 ^∞   (dx/((x^2 +1)^n ))   , n integr and n≥1
calculateAn=0dx(x2+1)n,nintegrandn1
Answered by Dwaipayan Shikari last updated on 11/Jan/21
∫_0 ^∞ (dx/((x^2 +1)^n ))  =(1/2)∫_0 ^∞ (t^((1/2)−1) /((t+1)^((n−(1/2))+(1/2)) ))dt=β((1/2),n−(1/2))=((Γ(n−(1/2))Γ((1/2)))/(2Γ(n)))
0dx(x2+1)n=120t121(t+1)(n12)+12dt=β(12,n12)=Γ(n12)Γ(12)2Γ(n)
Answered by mathmax by abdo last updated on 11/Jan/21
A_n =∫_0 ^∞   ((x^2 +1)/((x^2 +1)^(n+1) ))dx =∫_0 ^∞  (x^2 /((x^2  +1)^(n+1) ))dx +A_(n+1)  we have  ∫_0 ^∞   (x^2 /((x^2  +1)^(n+1) ))dx =∫_0 ^∞ x(x(x^2 +1)^(−n−1) )dx  by parts u=x and  v^′  =x(x^2  +1)^(−n−1)  ⇒v=−(1/(2n))(x^2  +1)^(−n)   ⇒∫_0 ^∞  ((x^2 dx)/((x^2  +1)^(n+1) )) =[−(x/(2n))(x^2  +1)^(−n) ]_0 ^∞ +(1/(2n))∫_0 ^∞ (dx/((x^2  +1)^n ))  =(1/(2n))A_n  ⇒A_n =(1/(2n))A_n +A_(n+1)  ⇒A_(n+1) =(1−(1/(2n)))A_n  ⇒  A_(n+1) =((2n−1)/(2n))A_n   ⇒(A_(n+1) /A_n ) =((2n−1)/(2n)) ⇒Π_(k=1) ^(n−1)  (A_(k+1) /A_k )=Π_(k=1) ^(n−1)  ((2k−1)/(2k))  ⇒ (A_2 /A_1 ).(A_3 /A_2 ).....(A_n /A_(n−1) ) =((Π_(k=1) ^(n−1) (2k−1))/(2^(n−1) (n−1)!))⇒  A_n =A_1 ×((1.3....(2n−3))/(2^(n−1) (n−1)!)) =A_1 ×((1.2.3.....(2n−4)(2n−3)(2n−2))/((2^(n−1) )^2 (n−1)!^2 ))  =(((2n−2)!)/(2^(2n−2) ((n−1)!)^2 ))A_1   =(((2n−2)!)/(2^(2n−2) (n−1)!^2 )).(π/2)   (n>1) ⇒  A_n =π×(((2n−2)!)/(2^(2n−1) {(n−1)!^2 }))
An=0x2+1(x2+1)n+1dx=0x2(x2+1)n+1dx+An+1wehave0x2(x2+1)n+1dx=0x(x(x2+1)n1)dxbypartsu=xandv=x(x2+1)n1v=12n(x2+1)n0x2dx(x2+1)n+1=[x2n(x2+1)n]0+12n0dx(x2+1)n=12nAnAn=12nAn+An+1An+1=(112n)AnAn+1=2n12nAnAn+1An=2n12nk=1n1Ak+1Ak=k=1n12k12kA2A1.A3A2..AnAn1=k=1n1(2k1)2n1(n1)!An=A1×1.3.(2n3)2n1(n1)!=A1×1.2.3..(2n4)(2n3)(2n2)(2n1)2(n1)!2=(2n2)!22n2((n1)!)2A1=(2n2)!22n2(n1)!2.π2(n>1)An=π×(2n2)!22n1{(n1)!2}
Answered by mathmax by abdo last updated on 11/Jan/21
residus method A_n =(1/2)∫_(−∞) ^(+∞)  (dx/((x^2  +1)^n )) let ϕ(z)=(1/((z^2  +1)^n )) ⇒  ϕ(z)=(1/((z−i)^n (z+i)^n ))  residus give ∫_R ϕ(z)dz=2iπRes(ϕ,i)  Res(ϕ,i)=lim_(z→i)   (1/((n−1)!)){(z−i)^n ϕ(z)}^((n−1))  =lim_(z→i) (1/((n−1)!)){(z+i)^(−n) }^((n−1))   that lead to find  (z+i)^(−n) }^((p))   {(z+i)^(−n) }^((1))  =−n(z+i)^(−n−1)   {(z+i)^(−n) }^((2))  =(−1)^2 n(n+1)(z+i)^(−(n+2))   {(z+i)^(−n) }^((p))  =(−1)^p n(n+1)....(n+p−1)(z+i)^(−n−p)   p=n−1 ⇒{(z+i)^(−n) }^((n−1))  =(−1)^(n−1) n(n+1)....(n+n−1−1)(z+i)^(−n−(n−1))   =(−1)^(n−1) n(n+1).....(2n−2)(z+i)^(−2n+1)   =(((−1)^(n−1) n(n+1)....(2n−2))/((z+i)^(2n−1) )) ⇒  Res(ϕ,i)=lim_(z→i)   (1/((n−1)!))×(((−1)^(n−1) n(n+1)....(2n−2))/((z+i)^(2n−1) ))  =(((−1)^(n−1) n(n+1)....(2n−2))/((n−1)!(2i)^(2n−1) )) =i(((−1)^(n−1) n(n+1)....(2n−2))/((n−1)!2^(2n−1) (−1)^n ))  =−i((n(n+1)....(2n−2))/(2^(2n−1) (n−1)!)) ⇒∫_R ϕ(z)dz =2iπ×(−i)×((n(n+1)....(2n−2))/(2^(2n−1) (n−1)!))  =π×((n(n+1)(n+2)...(2n−2))/(2^(2n−2) (n−1)!))=2A_n  ⇒  A_n =(π/2)×((n(n+1)(n+2)....(2n−2))/(2^(2n−2) (n−1)!))
residusmethodAn=12+dx(x2+1)nletφ(z)=1(z2+1)nφ(z)=1(zi)n(z+i)nresidusgiveRφ(z)dz=2iπRes(φ,i)Res(φ,i)=limzi1(n1)!{(zi)nφ(z)}(n1)=limzi1(n1)!{(z+i)n}(n1)thatleadtofind(z+i)n}(p){(z+i)n}(1)=n(z+i)n1{(z+i)n}(2)=(1)2n(n+1)(z+i)(n+2){(z+i)n}(p)=(1)pn(n+1).(n+p1)(z+i)npp=n1{(z+i)n}(n1)=(1)n1n(n+1).(n+n11)(z+i)n(n1)=(1)n1n(n+1)..(2n2)(z+i)2n+1=(1)n1n(n+1).(2n2)(z+i)2n1Res(φ,i)=limzi1(n1)!×(1)n1n(n+1).(2n2)(z+i)2n1=(1)n1n(n+1).(2n2)(n1)!(2i)2n1=i(1)n1n(n+1).(2n2)(n1)!22n1(1)n=in(n+1).(2n2)22n1(n1)!Rφ(z)dz=2iπ×(i)×n(n+1).(2n2)22n1(n1)!=π×n(n+1)(n+2)(2n2)22n2(n1)!=2AnAn=π2×n(n+1)(n+2).(2n2)22n2(n1)!

Leave a Reply

Your email address will not be published. Required fields are marked *