calculate-A-n-0-dx-x-2-1-n-n-integr-and-n-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 128952 by mathmax by abdo last updated on 11/Jan/21 calculateAn=∫0∞dx(x2+1)n,nintegrandn⩾1 Answered by Dwaipayan Shikari last updated on 11/Jan/21 ∫0∞dx(x2+1)n=12∫0∞t12−1(t+1)(n−12)+12dt=β(12,n−12)=Γ(n−12)Γ(12)2Γ(n) Answered by mathmax by abdo last updated on 11/Jan/21 An=∫0∞x2+1(x2+1)n+1dx=∫0∞x2(x2+1)n+1dx+An+1wehave∫0∞x2(x2+1)n+1dx=∫0∞x(x(x2+1)−n−1)dxbypartsu=xandv′=x(x2+1)−n−1⇒v=−12n(x2+1)−n⇒∫0∞x2dx(x2+1)n+1=[−x2n(x2+1)−n]0∞+12n∫0∞dx(x2+1)n=12nAn⇒An=12nAn+An+1⇒An+1=(1−12n)An⇒An+1=2n−12nAn⇒An+1An=2n−12n⇒∏k=1n−1Ak+1Ak=∏k=1n−12k−12k⇒A2A1.A3A2…..AnAn−1=∏k=1n−1(2k−1)2n−1(n−1)!⇒An=A1×1.3….(2n−3)2n−1(n−1)!=A1×1.2.3…..(2n−4)(2n−3)(2n−2)(2n−1)2(n−1)!2=(2n−2)!22n−2((n−1)!)2A1=(2n−2)!22n−2(n−1)!2.π2(n>1)⇒An=π×(2n−2)!22n−1{(n−1)!2} Answered by mathmax by abdo last updated on 11/Jan/21 residusmethodAn=12∫−∞+∞dx(x2+1)nletφ(z)=1(z2+1)n⇒φ(z)=1(z−i)n(z+i)nresidusgive∫Rφ(z)dz=2iπRes(φ,i)Res(φ,i)=limz→i1(n−1)!{(z−i)nφ(z)}(n−1)=limz→i1(n−1)!{(z+i)−n}(n−1)thatleadtofind(z+i)−n}(p){(z+i)−n}(1)=−n(z+i)−n−1{(z+i)−n}(2)=(−1)2n(n+1)(z+i)−(n+2){(z+i)−n}(p)=(−1)pn(n+1)….(n+p−1)(z+i)−n−pp=n−1⇒{(z+i)−n}(n−1)=(−1)n−1n(n+1)….(n+n−1−1)(z+i)−n−(n−1)=(−1)n−1n(n+1)…..(2n−2)(z+i)−2n+1=(−1)n−1n(n+1)….(2n−2)(z+i)2n−1⇒Res(φ,i)=limz→i1(n−1)!×(−1)n−1n(n+1)….(2n−2)(z+i)2n−1=(−1)n−1n(n+1)….(2n−2)(n−1)!(2i)2n−1=i(−1)n−1n(n+1)….(2n−2)(n−1)!22n−1(−1)n=−in(n+1)….(2n−2)22n−1(n−1)!⇒∫Rφ(z)dz=2iπ×(−i)×n(n+1)….(2n−2)22n−1(n−1)!=π×n(n+1)(n+2)…(2n−2)22n−2(n−1)!=2An⇒An=π2×n(n+1)(n+2)….(2n−2)22n−2(n−1)! Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: calculate-0-1-ln-1-x-6-dx-Next Next post: find-0-e-3x-ln-1-e-2x-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.