calculate-A-n-0-dx-x-2-1-x-2-2-x-2-n-wth-n-integr-natural-and-n-1- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 122323 by mathmax by abdo last updated on 15/Nov/20 calculateAn=∫0∞dx(x2+1)(x2+2)….(x2+n)wthnintegrnaturalandn⩾1 Commented by Dwaipayan Shikari last updated on 16/Nov/20 ∫0∞(1x2+1−1x2+2)dx=π2(1−12)∫0∞1(x2+1)(x2+2)(x2+3)=12∫0∞1(x2+1)−1(x2+3)−∫0∞1(x2+2)−1(x2+3)=12(π2−π23)−(π22−π23)=π4−π22+π43∫0∞1(x2+1)(x2+2)(x2+3)(x2+4)dx=13∫0∞1(x2+1)(x2+2)(x2+3)−13∫0∞1(x2+2)(x2+3)(x2+4)=π12−π62+π63−16∫0∞1x2+2−1x2+4+13∫0∞1x2+3−1x2+4=π12−π62+π63−16(π22−π24)+13(π23−π24)=π12−π42+π33…. Answered by mathmax by abdo last updated on 16/Nov/20 letdecomposeF(u)=1(u+1)(u+2)….(u+n)=1∏k=1n(u+k)F(u)=∑k=1naku+kwithak=limu→−k(u+k)F(u)wehaveF(u)=1(u+1)….(u+k−1)(u+k)(u+k+1)…(u+n)(u+k)F(u)=1(u+1)(u+2)…(u+k−1)(u+k+1)….(u+n)⇒ak=1(−k+1)(−k+2)….(−1)(−k+k+1)(−k+k+2)…(−k+n)=1(−1)k−1(k−1)!×1(n−k)!=(−1)k−1(k−1)!(n−k)!⇒F(u)=∑k=1n(−1)k−1(k−1)!(n−k)!(u+k)2An=∫−∞+∞F(x2)dx=∑k=1n(−1)k−1(k−1)!(n−k)!∫−∞+∞dxx2+k∫−∞+∞dxx2+k=∫−∞+∞dx(x−ik)(x+ik)=2iπRes(f,ik)=2iπ×12ik=πk⇒An=π2∑k=1n(−1)k−1(k−1)!(n−k)!k Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: lim-x-x-2-3x-2-x-Next Next post: find-x-2-x-8x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.