Menu Close

calculate-A-n-0-dx-x-2-1-x-2-2-x-2-n-wth-n-integr-natural-and-n-1-




Question Number 122323 by mathmax by abdo last updated on 15/Nov/20
calculate  A_n =∫_0 ^∞   (dx/((x^2 +1)(x^2 +2)....(x^2  +n)))  wth n integr natural and n≥1
calculateAn=0dx(x2+1)(x2+2).(x2+n)wthnintegrnaturalandn1
Commented by Dwaipayan Shikari last updated on 16/Nov/20
∫_0 ^∞ ((1/(x^2 +1))−(1/(x^2 +2)))dx  =(π/2)(1−(1/( (√2))))  ∫_0 ^∞ (1/((x^2 +1)(x^2 +2)(x^2 +3)))=(1/2)∫_0 ^∞ (1/((x^2 +1)))−(1/((x^2 +3)))−∫_0 ^∞ (1/((x^2 +2)))−(1/((x^2 +3)))                                                       =(1/2)((π/2)−(π/(2(√3))))−((π/( 2(√2)))−(π/(2(√3))))                                                       = (π/4)−(π/(2(√2)))+(π/(4(√3)))  ∫_0 ^∞ (1/((x^2 +1)(x^2 +2)(x^2 +3)(x^2 +4)))dx  =(1/3)∫_0 ^∞ (1/((x^2 +1)(x^2 +2)(x^2 +3)))−(1/3)∫_0 ^∞ (1/((x^2 +2)(x^2 +3)(x^2 +4)))  =(π/(12))−(π/(6(√2)))+(π/(6(√3)))−(1/6)∫_0 ^∞ (1/(x^2 +2))−(1/(x^2 +4))+(1/3)∫_0 ^∞ (1/(x^2 +3))−(1/(x^2 +4))  =(π/(12))−(π/(6(√2)))+(π/(6(√3)))−(1/6)((π/(2(√2)))−(π/( 2(√4))))+(1/3)((π/(2(√3)))−(π/(2(√4))))  =(π/(12))−(π/(4(√2)))+(π/(3(√3)))  ....
0(1x2+11x2+2)dx=π2(112)01(x2+1)(x2+2)(x2+3)=1201(x2+1)1(x2+3)01(x2+2)1(x2+3)=12(π2π23)(π22π23)=π4π22+π4301(x2+1)(x2+2)(x2+3)(x2+4)dx=1301(x2+1)(x2+2)(x2+3)1301(x2+2)(x2+3)(x2+4)=π12π62+π631601x2+21x2+4+1301x2+31x2+4=π12π62+π6316(π22π24)+13(π23π24)=π12π42+π33.
Answered by mathmax by abdo last updated on 16/Nov/20
let decompose F(u)=(1/((u+1)(u+2)....(u+n))) =(1/(Π_(k=1) ^n (u+k)))  F(u)=Σ_(k=1) ^n  (a_k /(u+k))    with a_k =lim_(u→−k)   (u+k)F(u)  we have F(u) =(1/((u+1)....(u+k−1)(u+k)(u+k+1)...(u+n)))  (u+k)F(u) =(1/((u+1)(u+2)...(u+k−1)(u+k+1)....(u+n))) ⇒  a_k =(1/((−k+1)(−k+2)....(−1)(−k+k+1)(−k+k+2)...(−k+n)))  =(1/((−1)^(k−1) (k−1)!))×(1/((n−k)!)) =(((−1)^(k−1) )/((k−1)!(n−k)!)) ⇒  F(u)=Σ_(k=1) ^n  (((−1)^(k−1) )/((k−1)!(n−k)!(u+k)))  2A_n =∫_(−∞) ^(+∞) F(x^2 )dx =Σ_(k=1) ^n  (((−1)^(k−1) )/((k−1)!(n−k)!))∫_(−∞) ^(+∞)  (dx/(x^2  +k))  ∫_(−∞) ^(+∞)  (dx/(x^2  +k)) =∫_(−∞) ^(+∞)  (dx/((x−i(√k))(x+i(√k)))) =2iπ Res(f,i(√k))  =2iπ×(1/(2i(√k))) =(π/( (√k))) ⇒ A_n =(π/2) Σ_(k=1) ^n  (((−1)^(k−1) )/((k−1)!(n−k)!(√k)))
letdecomposeF(u)=1(u+1)(u+2).(u+n)=1k=1n(u+k)F(u)=k=1naku+kwithak=limuk(u+k)F(u)wehaveF(u)=1(u+1).(u+k1)(u+k)(u+k+1)(u+n)(u+k)F(u)=1(u+1)(u+2)(u+k1)(u+k+1).(u+n)ak=1(k+1)(k+2).(1)(k+k+1)(k+k+2)(k+n)=1(1)k1(k1)!×1(nk)!=(1)k1(k1)!(nk)!F(u)=k=1n(1)k1(k1)!(nk)!(u+k)2An=+F(x2)dx=k=1n(1)k1(k1)!(nk)!+dxx2+k+dxx2+k=+dx(xik)(x+ik)=2iπRes(f,ik)=2iπ×12ik=πkAn=π2k=1n(1)k1(k1)!(nk)!k

Leave a Reply

Your email address will not be published. Required fields are marked *