Menu Close

calculate-A-n-0-n-x-x-dx-and-lim-n-A-n-




Question Number 37895 by abdo mathsup 649 cc last updated on 19/Jun/18
calculate   A_n =∫_0 ^n (x−[(√x)])dx and  lim_(n→+∞)  A_n
calculateAn=0n(x[x])dxandlimn+An
Answered by tanmay.chaudhury50@gmail.com last updated on 19/Jun/18
∫_0 ^1 (x−[(√x) ])dx+∫_1 ^4 (x−[(√x) ]dx+∫_4 ^9 (x−[(√x) ] dx  +...  ∫_0 ^1 (x−0)dx+∫_1 ^4 (x−1)dx+∫_4 ^9 (x−2)dx+..  +−−∫_(((√(n−1))^ )^2 ) ^(((√n) )^2 ) (x−(√(n−1)) )dx  ={((1^2 −o^2 )/2)+((4^2 −1^2 )/2)+((9^2 −4^2 )/2)+...+((((√n) )^2 −((√(n−1)) )^2 )/2)  +{0.(1−0)+(4−1)+2(9−4)+3(16−9)+...+(  ((√(n−1)) (n−n+1)}  =(n/2)+(3+10+21+
01(x[x])dx+14(x[x]dx+49(x[x]dx+01(x0)dx+14(x1)dx+49(x2)dx+..+(n1)2(n)2(xn1)dx={12o22+42122+92422++(n)2(n1)22+{0.(10)+(41)+2(94)+3(169)++((n1(nn+1)}=n2+(3+10+21+

Leave a Reply

Your email address will not be published. Required fields are marked *